Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 LASSO與廣義LASSO選取變數比較
A comparative study of lasso and a general version of lasso for variable selection
作者 朱晉楠
Chu, Chin Nan
貢獻者 黃子銘
Huang,Tzee Ming
朱晉楠
Chu,Chin Nan
關鍵詞 變數選取
最小絕對值壓縮挑選運算
貝式訊息準則
Variable selection
Least absolute shrinkage and selection operator
Bayesian information criterion
日期 2017
上傳時間 31-Jul-2017 12:53:54 (UTC+8)
摘要 在建構模型時,變數的選取是非常重要的,一般使用向前選取、向後刪除、逐步迴歸來挑選變數。
Tibshirani[4]在1996 年提出最小絕對值壓縮挑選運算least absolute
shrinkage and selection operator;簡稱LASSO),LASSO 方法結合了變數係數的壓縮與變數選取。
本研究針對 LASSO 的限制式做修改,另外也將搜尋參數t 的方法改良,評估統計模型優劣則使用貝氏訊息準則,最後,改良的搜尋方法能更精確找到對於反應變數有影響的解釋變數,達到選取變數的效果。
In model construction, variable selection is a very important issue.Typical variable selection tools include
forward selection, backward selection and stepwise selection. In 1996,Tibshirani proposed a method called LASSO (Least Absolute Shrinkage and Selection Operator), which can be used for variable selection via
coefficient shrinkage.
In this thesis, a general version of LASSO is proposed to improve the variable selection ability of LASSO. The proposed method is obtained by modifiying the constraints of LASSO. For both LASSO and the proposed method, the constraints depends on a shrinkage parameter that needs to be specified. In this thesis, the shrinkage parameter is selected using Bayesian information criterion. When the optimal parameter is found, the proposed method outperforms LASSO in variable selection. However, the search of the optimal parameter can be computationally intensive.
參考文獻 Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate:
a practical and powerful approach to multiple testing. Journal of the
Royal Statistical Society, Series B, 57(1), 1995.

Akaike Hirotsugu. A new look at the statistical model identifation.
IEEE Transactions on Automatic Control, 19(6), 1974.

M.R. Osborne, B. Presnell, and B.A. T urlach. A note on the least
absolute shrink age and selection operator. unpublished manuscript. 1998.

Tibshirani Robert. Regression shrinkage and selection via the lasso. Jour-
nal of the Royal Statistical Society., 1996.

Gideon E Schwarz. Estimating the dimension of a model. Annals of
Statistics, 6(2), 1978.

Ming Yuan and Yi Lin. Model selection and estimation in regression
with grouped variables. Journal of the Royal Statistical Society, Series
B, 68(1), 2006.

Hui Zou and Hastie. Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society, Series B, 2005.
描述 碩士
國立政治大學
統計學系
104354030
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0104354030
資料類型 thesis
dc.contributor.advisor 黃子銘zh_TW
dc.contributor.advisor Huang,Tzee Mingen_US
dc.contributor.author (Authors) 朱晉楠zh_TW
dc.contributor.author (Authors) Chu,Chin Nanen_US
dc.creator (作者) 朱晉楠zh_TW
dc.creator (作者) Chu, Chin Nanen_US
dc.date (日期) 2017en_US
dc.date.accessioned 31-Jul-2017 12:53:54 (UTC+8)-
dc.date.available 31-Jul-2017 12:53:54 (UTC+8)-
dc.date.issued (上傳時間) 31-Jul-2017 12:53:54 (UTC+8)-
dc.identifier (Other Identifiers) G0104354030en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/111598-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計學系zh_TW
dc.description (描述) 104354030zh_TW
dc.description.abstract (摘要) 在建構模型時,變數的選取是非常重要的,一般使用向前選取、向後刪除、逐步迴歸來挑選變數。
Tibshirani[4]在1996 年提出最小絕對值壓縮挑選運算least absolute
shrinkage and selection operator;簡稱LASSO),LASSO 方法結合了變數係數的壓縮與變數選取。
本研究針對 LASSO 的限制式做修改,另外也將搜尋參數t 的方法改良,評估統計模型優劣則使用貝氏訊息準則,最後,改良的搜尋方法能更精確找到對於反應變數有影響的解釋變數,達到選取變數的效果。
zh_TW
dc.description.abstract (摘要) In model construction, variable selection is a very important issue.Typical variable selection tools include
forward selection, backward selection and stepwise selection. In 1996,Tibshirani proposed a method called LASSO (Least Absolute Shrinkage and Selection Operator), which can be used for variable selection via
coefficient shrinkage.
In this thesis, a general version of LASSO is proposed to improve the variable selection ability of LASSO. The proposed method is obtained by modifiying the constraints of LASSO. For both LASSO and the proposed method, the constraints depends on a shrinkage parameter that needs to be specified. In this thesis, the shrinkage parameter is selected using Bayesian information criterion. When the optimal parameter is found, the proposed method outperforms LASSO in variable selection. However, the search of the optimal parameter can be computationally intensive.
en_US
dc.description.tableofcontents 第一章 緒論 1
第二章 文獻探討 3
第三章 研究方法 7
第四章 模擬資料分析 11
第五章 結論與建議 18
參考文獻 19
zh_TW
dc.format.extent 935963 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0104354030en_US
dc.subject (關鍵詞) 變數選取zh_TW
dc.subject (關鍵詞) 最小絕對值壓縮挑選運算zh_TW
dc.subject (關鍵詞) 貝式訊息準則zh_TW
dc.subject (關鍵詞) Variable selectionen_US
dc.subject (關鍵詞) Least absolute shrinkage and selection operatoren_US
dc.subject (關鍵詞) Bayesian information criterionen_US
dc.title (題名) LASSO與廣義LASSO選取變數比較zh_TW
dc.title (題名) A comparative study of lasso and a general version of lasso for variable selectionen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate:
a practical and powerful approach to multiple testing. Journal of the
Royal Statistical Society, Series B, 57(1), 1995.

Akaike Hirotsugu. A new look at the statistical model identifation.
IEEE Transactions on Automatic Control, 19(6), 1974.

M.R. Osborne, B. Presnell, and B.A. T urlach. A note on the least
absolute shrink age and selection operator. unpublished manuscript. 1998.

Tibshirani Robert. Regression shrinkage and selection via the lasso. Jour-
nal of the Royal Statistical Society., 1996.

Gideon E Schwarz. Estimating the dimension of a model. Annals of
Statistics, 6(2), 1978.

Ming Yuan and Yi Lin. Model selection and estimation in regression
with grouped variables. Journal of the Royal Statistical Society, Series
B, 68(1), 2006.

Hui Zou and Hastie. Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society, Series B, 2005.
zh_TW