Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 石墨烷與二硫化鉬奈米帶之過渡金屬鏈
Transition-Metal Chains on Graphane and MoS2 Nanoribbons
作者 顏志豪
Yen, Chi Hao
貢獻者 楊志開
Yang, Chih Kai
顏志豪
Yen, Chi Hao
關鍵詞 二硫化鉬
石墨烷
第一類過渡金屬
Molybdenum Disulfide
Graphane
The first type of transition metal
日期 2017
上傳時間 28-Aug-2017 11:42:04 (UTC+8)
摘要 二維層狀材料在層數為原子尺寸的結構,其特徵由垂直二維平面的方向看原子排列呈現六角形蜂巢結構,此類材料有過渡金屬硫化物以及族碳的同素異形體石墨烯等,在本論文中所選擇的材料是二硫化鉬與石墨烷,二維材料二硫化鉬MoS2以 ,二維材料依照裁切方向的不同,可分為一維鋸齒奈米帶(1D zigzag nanoribbon)以及一維扶手椅奈米帶(1D armchair nanoribbon)。
將二維的二硫化鉬裁切成數個不同寬度的一維扶手椅奈米帶(1D armchair nanoribbon),然後在奈米帶元素鉬位置的上方加入第一類過渡金屬,由於過渡金屬有3d軌域的電子,所以分析對不同寬度奈米帶的磁性以及能帶性質。
接著將二維的石墨烷裁切成一維鋸齒奈米帶(1D zigzag nanoribbon),根據拔除的氫鏈導致磁性變化,然後在被拔除氫鏈範圍內的六角蜂巢結構的中心處加入第一類過渡金屬,分析對拔除氫鏈的石墨烷磁性以及能帶性質的影響,以上兩種材料奈米帶分析,使用第一原理計算磁性和能帶以及局部電子態密度。
參考文獻 [1] K. S. Novoselov,; A. K. Geim,; S. V. Morozov,; D. Jiang,; Y. Zhang ,; S. V. Dubonos,; I. V. Grigorieva,; A. A. Firsov, ” Electric Field Effect in Atomically Thin Carbon Films” Science. 22;306(5696):666-9 (2004)
[2] L. Pisani, J. A. Chan, B. Montanari, and N. M. Harrison ,’’ Electronic structure and magnetic properties of graphitic ribbons’’ Phys. Rev. B 75, 064418 (2007)
[3] Kyoko Nakada, Mitsutaka Fujita, Gene Dresselhaus, and Mildred S. Dresselhaus ,’’ Edge state in graphene ribbons: Nanometer size effect and edge shape dependence’’ Phys. Rev. B 54, 17954 (1996)
[4] Jorge O. Sofo, Ajay S. Chaudhari, and Greg D. Barber ,’’ Graphane: a two-dimensional hydrocarbon’’ Phys. Rev. B 75, 153401 (2007)
[5] C. K. Yang,’’Graphane with defect or transition-metal impurity’’ CarbonVolume 48, Issue 13, Pages 3901–3905 (2010)
[6] Bi-Ru Wu and Chih-Kai Yang ,’’ Electronic structures of graphane with vacancies and graphene adsorbed with fluorine atoms’’ AIP Advances 2, 012173 (2012)
[7] Bi-Ru Wu and Chih-Kai Yang ,’’ Energy band
modulation of graphane by hydrogen-vacancy chains: A first-principles study’’AIP Advances 4, 087129 (2014)
[8] Ganesh R. Bhimanapati,Zhong Lin, Vincent Meunier, Yeonwoong Jung, Judy Cha, Saptarshi Das, Di Xiao, Youngwoo Son, Michael S. Strano, Valentino R. Cooper, Liangbo Liang, Steven G. Louie, Emilie Ringe, Wu Zhou, Steve S. Kim, Rajesh R. Naik, Bobby G. Sumpter, Humberto Terrones, Fengnian Xia, Yeliang Wang, Jun Zhu, Deji Akinwande, Nasim Alem, Jon A. Schuller, Raymond E. Schaak, Mauricio Terrones, and Joshua A. Robinson,’’ Recent Advances in Two-Dimensional Materials beyond Graphene’’ACSNANO,12,11509-11539(2015)
[9] Jiangang He, Kechen Wu, Rongjian Sa, Qiaohong Li, and Yongqin Wei View Affiliations ,’’ Magnetic properties of nonmetal atoms absorbed MoS2monolayers’’ Appl. Phys. Lett. 96, 082504 (2010)
[10] Ferdows Zahid , Lei Liu, Yu Zhu, Jian Wang, and Hong Guo,’’A generic tight-binding model for monolayer, bilayer and bulk MoS2’’ AIP Advances 3, 052111 (2013)
[11] Z. Y. Zhu, Y. C. Cheng, U. Schwingenschl, ’’ Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors’’Phys. Rev. B 84, 153402 (2011)
[12] Yafei Li, Zhen Zhou, Shengbai Zhang, and Zhongfang Chen ,’’MoS2 Nanoribbons: High Stability and Unusual Electronic and Magnetic Properties’’J. AM. CHEM. SOC, 130, 16739–16744(2008)
[13] Jiahao Kang, Wei Liu, Deblina Sarkar, Debdeep Jena, and Kaustav Banerjee ,’’Computational Study of Metal Contacts to Monolayer Transition-Metal Dichalcogenide Semiconductors’’Phys.Rev.X 4,031005(2014)
[14] Héctor González-Herrero, José M. Gómez-Rodríguez, Pierre Mallet, Mohamed Moaied, Juan José Palacios, Carlos Salgado, Miguel M. Ugeda, Jean-Yves Veuillen, Félix Yndurain, Iván Brihuega ,’’ Atomic-scale control of graphene magnetism byusing hydrogen atoms’’ Science. 22 APRIL• VOL 352 ISSUE 6284(2016)
[15] W. Kohn and L. J. Sham,’’ Self-Consistent Equations Including Exchange and Correlation Effects’’Phys. Rev. 140 A1133 (1965)
[16] P. Hohenberg and W. Kohn,’’Inhomogeneous Electron Gas’’Phys. Rev. 136, B864 (1964)
[17] G. Kresse and J. Hafner,’’Ab.initio molecular dynamics for liquid metals ’’Phys. Rev. B 47,558(1993)
[18] P. E. Blochl,’’Projector augmented-wave method’’Phys. Rev. B 50,17953(1994)
[19] Paul Ziesche , Stefan Kurth b, John P. Perdew ,’’Density functionals from LDA to GGA’’Computational Materials Science 11 ,122–127(1998)
描述 碩士
國立政治大學
應用物理研究所
103755012
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0103755012
資料類型 thesis
dc.contributor.advisor 楊志開zh_TW
dc.contributor.advisor Yang, Chih Kaien_US
dc.contributor.author (Authors) 顏志豪zh_TW
dc.contributor.author (Authors) Yen, Chi Haoen_US
dc.creator (作者) 顏志豪zh_TW
dc.creator (作者) Yen, Chi Haoen_US
dc.date (日期) 2017en_US
dc.date.accessioned 28-Aug-2017 11:42:04 (UTC+8)-
dc.date.available 28-Aug-2017 11:42:04 (UTC+8)-
dc.date.issued (上傳時間) 28-Aug-2017 11:42:04 (UTC+8)-
dc.identifier (Other Identifiers) G0103755012en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/112208-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用物理研究所zh_TW
dc.description (描述) 103755012zh_TW
dc.description.abstract (摘要) 二維層狀材料在層數為原子尺寸的結構,其特徵由垂直二維平面的方向看原子排列呈現六角形蜂巢結構,此類材料有過渡金屬硫化物以及族碳的同素異形體石墨烯等,在本論文中所選擇的材料是二硫化鉬與石墨烷,二維材料二硫化鉬MoS2以 ,二維材料依照裁切方向的不同,可分為一維鋸齒奈米帶(1D zigzag nanoribbon)以及一維扶手椅奈米帶(1D armchair nanoribbon)。
將二維的二硫化鉬裁切成數個不同寬度的一維扶手椅奈米帶(1D armchair nanoribbon),然後在奈米帶元素鉬位置的上方加入第一類過渡金屬,由於過渡金屬有3d軌域的電子,所以分析對不同寬度奈米帶的磁性以及能帶性質。
接著將二維的石墨烷裁切成一維鋸齒奈米帶(1D zigzag nanoribbon),根據拔除的氫鏈導致磁性變化,然後在被拔除氫鏈範圍內的六角蜂巢結構的中心處加入第一類過渡金屬,分析對拔除氫鏈的石墨烷磁性以及能帶性質的影響,以上兩種材料奈米帶分析,使用第一原理計算磁性和能帶以及局部電子態密度。
zh_TW
dc.description.tableofcontents 第一章 緒論 5
第二章 研究方法 17
第三章 研究結果 21
3.1 第一部分 Zigzag graphane NR(n=16,cut8) 22
3.1.1 Zigzag graphane NR(n=16,cut8)+ TM(1th,3d) 28
3.1.2 G16(cut8)+ Titanium 29
3.1.3 G16(cut8)+ Vanadium 36
3.1.4 G16(cut8)+ Chromium 44
3.1.5 G16(cut8)+ Manganese 51
3.1.6 G16(cut8)+ Iron 58
3.1.7 G16(cut8)+ Cobal 65
3.1.8 G16(cut8)+ Nickel 72
3.1.9 G16(cut8)+ Copper 79
3.1.10 G16(cut8)+ Zinc 86
3.2 第二部分Zigzag graphane NR(n=18,cut8) 93
3.2.1 Zigzag graphane NR(n=18,cut8)+ TM(Ti、V、Cr、Mn、Fe)
100
3.2.2 G18(cut8)+ Titanium 100
3.2.3 G18(cut8)+ Vanadium 104
3.2.4 G18(cut8)+ Chromium 107
3.2.5 G18(cut8)+ Manganese 110
3.2.6 G18(cut8)+ Iron 113
3.3 第三部分 Armchair MoS2 nanoribbon 116
3.3.1 Armchair MoS2 NR (n=11~29) + Titanium(2 chain) 119
3.3.2 MoS2 (n=11)+ Titanium (2 chain) 119
3.3.3 MoS2 (n=13)+ Titanium (2 chain) 126
3.3.4 MoS2 (n=15)+ Titanium (2 chain) 129
3.3.5 MoS2 (n=17)+ Titanium (2 chain) 132
3.3.6 MoS2 (n=19)+ Titanium (2 chain) 135
3.3.7 MoS2 (n=21)+ Titanium (2 chain) 138
3.3.8 MoS2 (n=23)+ Titanium (2 chain) 141
3.3.9 MoS2 (n=25)+ Titanium (2 chain) 144
3.3.10 MoS2 (n=27)+ Titanium (2 chain) 147
3.3.11 MoS2 (n=29)+ Titanium (2 chain) 150
3.4 第四部分Armchair MoS2 NR(n=15) + VIA(Se、Te) 153
3.4.1 MoS2 (n=15)+ Selenium(1 chain) 153
3.4.2 MoS2 (n=15)+ Tellurium(1 chain) 156
第四章 結果討論 159
附錄 參考文獻 162
zh_TW
dc.format.extent 9420965 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0103755012en_US
dc.subject (關鍵詞) 二硫化鉬zh_TW
dc.subject (關鍵詞) 石墨烷zh_TW
dc.subject (關鍵詞) 第一類過渡金屬zh_TW
dc.subject (關鍵詞) Molybdenum Disulfideen_US
dc.subject (關鍵詞) Graphaneen_US
dc.subject (關鍵詞) The first type of transition metalen_US
dc.title (題名) 石墨烷與二硫化鉬奈米帶之過渡金屬鏈zh_TW
dc.title (題名) Transition-Metal Chains on Graphane and MoS2 Nanoribbonsen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] K. S. Novoselov,; A. K. Geim,; S. V. Morozov,; D. Jiang,; Y. Zhang ,; S. V. Dubonos,; I. V. Grigorieva,; A. A. Firsov, ” Electric Field Effect in Atomically Thin Carbon Films” Science. 22;306(5696):666-9 (2004)
[2] L. Pisani, J. A. Chan, B. Montanari, and N. M. Harrison ,’’ Electronic structure and magnetic properties of graphitic ribbons’’ Phys. Rev. B 75, 064418 (2007)
[3] Kyoko Nakada, Mitsutaka Fujita, Gene Dresselhaus, and Mildred S. Dresselhaus ,’’ Edge state in graphene ribbons: Nanometer size effect and edge shape dependence’’ Phys. Rev. B 54, 17954 (1996)
[4] Jorge O. Sofo, Ajay S. Chaudhari, and Greg D. Barber ,’’ Graphane: a two-dimensional hydrocarbon’’ Phys. Rev. B 75, 153401 (2007)
[5] C. K. Yang,’’Graphane with defect or transition-metal impurity’’ CarbonVolume 48, Issue 13, Pages 3901–3905 (2010)
[6] Bi-Ru Wu and Chih-Kai Yang ,’’ Electronic structures of graphane with vacancies and graphene adsorbed with fluorine atoms’’ AIP Advances 2, 012173 (2012)
[7] Bi-Ru Wu and Chih-Kai Yang ,’’ Energy band
modulation of graphane by hydrogen-vacancy chains: A first-principles study’’AIP Advances 4, 087129 (2014)
[8] Ganesh R. Bhimanapati,Zhong Lin, Vincent Meunier, Yeonwoong Jung, Judy Cha, Saptarshi Das, Di Xiao, Youngwoo Son, Michael S. Strano, Valentino R. Cooper, Liangbo Liang, Steven G. Louie, Emilie Ringe, Wu Zhou, Steve S. Kim, Rajesh R. Naik, Bobby G. Sumpter, Humberto Terrones, Fengnian Xia, Yeliang Wang, Jun Zhu, Deji Akinwande, Nasim Alem, Jon A. Schuller, Raymond E. Schaak, Mauricio Terrones, and Joshua A. Robinson,’’ Recent Advances in Two-Dimensional Materials beyond Graphene’’ACSNANO,12,11509-11539(2015)
[9] Jiangang He, Kechen Wu, Rongjian Sa, Qiaohong Li, and Yongqin Wei View Affiliations ,’’ Magnetic properties of nonmetal atoms absorbed MoS2monolayers’’ Appl. Phys. Lett. 96, 082504 (2010)
[10] Ferdows Zahid , Lei Liu, Yu Zhu, Jian Wang, and Hong Guo,’’A generic tight-binding model for monolayer, bilayer and bulk MoS2’’ AIP Advances 3, 052111 (2013)
[11] Z. Y. Zhu, Y. C. Cheng, U. Schwingenschl, ’’ Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors’’Phys. Rev. B 84, 153402 (2011)
[12] Yafei Li, Zhen Zhou, Shengbai Zhang, and Zhongfang Chen ,’’MoS2 Nanoribbons: High Stability and Unusual Electronic and Magnetic Properties’’J. AM. CHEM. SOC, 130, 16739–16744(2008)
[13] Jiahao Kang, Wei Liu, Deblina Sarkar, Debdeep Jena, and Kaustav Banerjee ,’’Computational Study of Metal Contacts to Monolayer Transition-Metal Dichalcogenide Semiconductors’’Phys.Rev.X 4,031005(2014)
[14] Héctor González-Herrero, José M. Gómez-Rodríguez, Pierre Mallet, Mohamed Moaied, Juan José Palacios, Carlos Salgado, Miguel M. Ugeda, Jean-Yves Veuillen, Félix Yndurain, Iván Brihuega ,’’ Atomic-scale control of graphene magnetism byusing hydrogen atoms’’ Science. 22 APRIL• VOL 352 ISSUE 6284(2016)
[15] W. Kohn and L. J. Sham,’’ Self-Consistent Equations Including Exchange and Correlation Effects’’Phys. Rev. 140 A1133 (1965)
[16] P. Hohenberg and W. Kohn,’’Inhomogeneous Electron Gas’’Phys. Rev. 136, B864 (1964)
[17] G. Kresse and J. Hafner,’’Ab.initio molecular dynamics for liquid metals ’’Phys. Rev. B 47,558(1993)
[18] P. E. Blochl,’’Projector augmented-wave method’’Phys. Rev. B 50,17953(1994)
[19] Paul Ziesche , Stefan Kurth b, John P. Perdew ,’’Density functionals from LDA to GGA’’Computational Materials Science 11 ,122–127(1998)
zh_TW