Publications-Theses
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 基於近紅外線影像之年齡層估算機制
A mechanism for age classification using near-infrared images作者 林言翰
Lin, Yan-Han貢獻者 郭耀煌<br>廖文宏
Kuo, Yau-Hwang<br>Liao, Wen-Hung
林言翰
Lin, Yan-Han關鍵詞 年齡估計
近紅外線影像
局部二值模式
RealSense攝影機
Age estimation
Near infrared
Local Binary Patterns
RealSense camera日期 2017 上傳時間 13-Sep-2017 14:47:33 (UTC+8) 摘要 近紅外線影像由於其物理特性與成像方式,其紋理細節都有發散模糊不清的現象,對於以紋理為主要特徵的年齡辨識問題而言更具挑戰。本論文主要目的是以近紅外線人臉影像為基礎,找出對近紅外線年齡特徵有最佳描述力的特徵描述子,辨識近紅外線影像中被拍攝者的年齡區間,建構整個年齡層估算機制。 相關研究一部分關注可見光年齡辨識,另一部分則聚焦在近紅外線人臉辨識,目前還沒有近紅外線年齡辨識的相關文獻能參考,如何從接近的研究領域找尋是適當的演算法是本研究遇到的第一個挑戰。在資料庫的部分,FGNET和MORPH常被用於可見光的年齡辨識議題; PolyU和LDHF則用於近紅外線人臉辨識相關研究,在目前沒有近紅外線年齡資料庫的情況,本研究自建RSNIR(Intel RealSense Near-Infrared Age Database),因此如何標準化拍攝環境流程、蒐集穩定的近紅外線影像是本研究面臨的第二個挑戰。 區域性特徵擷取方法的關鍵在於特徵描述子的描述力。本研究以LBP(Local Binary Patterns)為基礎,探討LBP在內的24個特徵描述子,最後實驗測試各個描述子在RSNIR的辨識率,結果發現基本型Fuzzy LBP和擴充型RILBP對近紅外線年齡特徵有最佳描述力。在空間譜子區塊(patch)設計部分,以3x3切割子區塊數的辨識效果最好,反應出其與影像校正時的人臉影像空間定義方式有關。 參考文獻 [1] Burnay, S. G., T. L. Williams, and C. H. Jones, eds. Applications of thermal imaging. CRC Press, 1988.[2] 薛玉利. 基于 Gabor 变换的特征提取及其应用. MS thesis. 山东大学, 2007.[3] Ojala, Timo, Matti Pietikainen, and Topi Maenpaa. "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns." Pattern Analysis and Machine Intelligence, IEEE Transactions on 24.7 (2002): 971-987.[4] Tan, Xiaoyang, and Bill Triggs. "Enhanced local texture feature sets for face recognition under difficult lighting conditions." Analysis and Modeling of Faces and Gestures. Springer Berlin Heidelberg, 2007. 168-182.[5] Liao, Wen-Hung. "Region description using extended local ternary patterns. "Pattern Recognition (ICPR), 2010 20th International Conference on. IEEE, 2010.[6] Liao, Wen-Hung. "Commensurate dimensionality reduction for extended local ternary patterns." Pattern Recognition (ICPR), 2012 21st International Conference on. IEEE, 2012.[7] Altman, Naomi S. "An introduction to kernel and nearest-neighbor nonparametric regression." The American Statistician 46.3 (1992): 175-185.[8] Guo, Guodong, Stan Z. Li, and Kapluk Chan. "Face recognition by support vector machines." Automatic Face and Gesture Recognition, 2000. Proceedings. Fourth IEEE International Conference on. IEEE, 2000.[9] Burges, Christopher JC. "A tutorial on support vector machines for pattern recognition." Data mining and knowledge discovery 2.2 (1998): 121-167.[10] The FG-NET Aging Database, http://www.fgnet.rsunit.com/, http://www-prima.inrialpes.fr/FGnet/, 2010. [11] Ricanek Jr, Karl, and Tamirat Tesafaye. "Morph: A longitudinal image database of normal adult age-progression." Automatic Face and Gesture Recognition, 2006. FGR 2006. 7th International Conference on. IEEE, 2006.[12] MORPH Face Database, http://faceaginggroup.com/, 2010.[13] PolyU NIR Face Database, http://www4.comp.polyu.edu.hk/~biometrics/polyudb_face.htm, 2010.[14] Hsu, Rein-Lien, Mohamed Abdel-Mottaleb, and Anil K. Jain. "Face detection in color images." Pattern Analysis and Machine Intelligence, IEEE Transactions on 24.5 (2002): 696-706.[15] Yang, Ming-Hsuan, and Narendra Ahuja. "Detecting human faces in color images." Image Processing, 1998. ICIP 98. Proceedings. 1998 International Conference on. Vol. 1. IEEE, 1998.[16] Viola, Paul, and Michael Jones. "Rapid object detection using a boosted cascade of simple features." Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. Vol. 1. IEEE, 2001.[17] Lienhart, Rainer, and Jochen Maydt. "An extended set of haar-like features for rapid object detection." Image Processing. 2002. Proceedings. 2002 International Conference on. Vol. 1. IEEE, 2002.[18] Liao, Shengcai, et al. "Learning multi-scale block local binary patterns for face recognition." Advances in Biometrics. Springer Berlin Heidelberg, 2007. 828-837.[19] Fu, Yun, Guodong Guo, and Thomas S. Huang. "Age synthesis and estimation via faces: A survey." Pattern Analysis and Machine Intelligence, IEEE Transactions on 32.11 (2010): 1955-1976.[20] Jabid, Taskeed, Md Hasanul Kabir, and Oksam Chae. "Local directional pattern (LDP) for face recognition." 2010 Digest of Technical Papers International Conference on Consumer Electronics (ICCE). 2010.[21] Ahonen, Timo, Abdenour Hadid, and Matti Pietikäinen. "Face recognition with local binary patterns." Computer vision-eccv 2004. Springer Berlin Heidelberg, 2004. 469-481.[22] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed., Reading, MA: Addison-Wesley, 1992. [23] Pizer, Stephen M., et al. "Adaptive histogram equalization and its variations." Computer vision, graphics, and image processing 39.3 (1987): 355-368. [24] Zuiderveld, Karel. "Contrast limited adaptive histogram equalization." Graphics gems IV. Academic Press Professional, Inc., 1994.[25] Turk, M., and Pentland, A. Eigenfaces for recognition. Journal of Cognitive Neuroscience 3 (1991), 71–86.[26] Belhumeur, P. N., Hespanha, J., and Kriegman, D. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 7 (1997), 711–720.[27] Hafiane, Adel, Guna Seetharaman, and Bertrand Zavidovique. "Median binary pattern for textures classification." International Conference Image Analysis and Recognition. Springer, Berlin, Heidelberg, 2007.[28] Jin, Hongliang, et al. "Face detection using improved LBP under Bayesian framework." Image and Graphics (ICIG`04), Third International Conference on. IEEE, 2004.[29] Heikkilä, Marko, Matti Pietikäinen, and Cordelia Schmid. "Description of interest regions with center-symmetric local binary patterns." ICVGIP. Vol. 6. 2006.[30] Ahonen, Timo, and Matti Pietikäinen. "Soft histograms for local binary patterns." Proceedings of the Finnish signal processing symposium, FINSIG. Vol. 5. No. 9. 2007.[31] Ahonen, Timo, Abdenour Hadid, and Matti Pietikainen. "Face description with local binary patterns: Application to face recognition." IEEE transactions on pattern analysis and machine intelligence 28.12 (2006): 2037-2041.[32] Ojala, Timo, Matti Pietikainen, and David Harwood. "Performance evaluation of texture measures with classification based on Kullback discrimination of distributions." Pattern Recognition, 1994. Vol. 1-Conference A: Computer Vision & Image Processing., Proceedings of the 12th IAPR International Conference on. Vol. 1. IEEE, 1994. 描述 碩士
國立政治大學
資訊科學學系
102753013資料來源 http://thesis.lib.nccu.edu.tw/record/#G0102753013 資料類型 thesis dc.contributor.advisor 郭耀煌<br>廖文宏 zh_TW dc.contributor.advisor Kuo, Yau-Hwang<br>Liao, Wen-Hung en_US dc.contributor.author (Authors) 林言翰 zh_TW dc.contributor.author (Authors) Lin, Yan-Han en_US dc.creator (作者) 林言翰 zh_TW dc.creator (作者) Lin, Yan-Han en_US dc.date (日期) 2017 en_US dc.date.accessioned 13-Sep-2017 14:47:33 (UTC+8) - dc.date.available 13-Sep-2017 14:47:33 (UTC+8) - dc.date.issued (上傳時間) 13-Sep-2017 14:47:33 (UTC+8) - dc.identifier (Other Identifiers) G0102753013 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/112676 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 資訊科學學系 zh_TW dc.description (描述) 102753013 zh_TW dc.description.abstract (摘要) 近紅外線影像由於其物理特性與成像方式,其紋理細節都有發散模糊不清的現象,對於以紋理為主要特徵的年齡辨識問題而言更具挑戰。本論文主要目的是以近紅外線人臉影像為基礎,找出對近紅外線年齡特徵有最佳描述力的特徵描述子,辨識近紅外線影像中被拍攝者的年齡區間,建構整個年齡層估算機制。 相關研究一部分關注可見光年齡辨識,另一部分則聚焦在近紅外線人臉辨識,目前還沒有近紅外線年齡辨識的相關文獻能參考,如何從接近的研究領域找尋是適當的演算法是本研究遇到的第一個挑戰。在資料庫的部分,FGNET和MORPH常被用於可見光的年齡辨識議題; PolyU和LDHF則用於近紅外線人臉辨識相關研究,在目前沒有近紅外線年齡資料庫的情況,本研究自建RSNIR(Intel RealSense Near-Infrared Age Database),因此如何標準化拍攝環境流程、蒐集穩定的近紅外線影像是本研究面臨的第二個挑戰。 區域性特徵擷取方法的關鍵在於特徵描述子的描述力。本研究以LBP(Local Binary Patterns)為基礎,探討LBP在內的24個特徵描述子,最後實驗測試各個描述子在RSNIR的辨識率,結果發現基本型Fuzzy LBP和擴充型RILBP對近紅外線年齡特徵有最佳描述力。在空間譜子區塊(patch)設計部分,以3x3切割子區塊數的辨識效果最好,反應出其與影像校正時的人臉影像空間定義方式有關。 zh_TW dc.description.tableofcontents 第一章 緒論 11.1 研究背景 11.2 研究動機 21.3 研究目的 51.4 研究架構 5第二章 人臉影像資料庫 62.1 MORPH 62.2 FGNET 72.3 PolyU 82.4 LDHF 102.5 RSNIR 11第三章 特徵擷取(Feature Extraction) 133.1 特徵擷取區域 143.2 特徵描述子(Feature Descriptor) 153.2.1 Local Binary Patterns(LBP) 163.2.2 Rotational-Invariance Local Binary Patterns(RILBP) 203.2.3 Uniform Local Binary Patterns(ULBP) 223.2.4 Rotational-Invariance Uniform Local Binary Patterns(RIULBP) 243.2.5 Median Binary Patterns(MBP) 253.2.6 Improved Local Binary Patterns(ILBP) 263.2.7 Center-Symmetric Local Binary Patterns(CS-LBP) 273.2.8 Local Ternary Patterns(LTP) 283.2.9 Extended Local Ternary Patterns(ELTP) 293.2.10 Center-Symmetric Local Ternary Patterns(CS-LTP) 303.2.11 Center-Symmetric Extended Local Ternary Patterns(CS-ELTP) 303.2.12 Fuzzy Local Ternary Patterns(Fuzzy LBP) 313.2.13 Local Directional Patterns(LDP) 33第四章 影像前處理 364.1 人臉/眼偵測(Face/Eyes Detection) 364.2 人臉校正(Face Alignment) 394.2.1 邊緣偵側(Edge Detection) 394.2.2 內眼角定位 404.2.3 人臉校正演算法 414.3 影像增強(Image Enhancement) 434.3.1 Gamma校正 434.3.2 基於直方圖修改的對比度增強 44第五章 年齡組估測機制 465.1 人臉年齡估測理論 465.2 人臉年齡評估規範 475.3 區域描述子的統計直方圖 495.4 分類(Classification) 52第六章 結果與討論 53第七章 未來展望 59附錄一 即時影像擷取 601. Intel® RealSense™ 602. 3D照相機(3D Camera) 613. 軟體開發套件(Software Development Kit,SDK) 62附錄二 全域/區域特徵擷取實驗結果 63附錄三 特徵描述子實驗結果 643.1 LBP 643.2 RILBP 643.3 ULBP 653.4 RIULBP 653.5 MBP 663.6 ILBP 663.7 CS-LBP 673.8 LTP 683.9 ELTP 703.10 CS-LTP 723.11 CS-ELTP 743.12 Fuzzy LBP 763.13 LDP 78參考文獻 80 zh_TW dc.format.extent 8187234 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0102753013 en_US dc.subject (關鍵詞) 年齡估計 zh_TW dc.subject (關鍵詞) 近紅外線影像 zh_TW dc.subject (關鍵詞) 局部二值模式 zh_TW dc.subject (關鍵詞) RealSense攝影機 zh_TW dc.subject (關鍵詞) Age estimation en_US dc.subject (關鍵詞) Near infrared en_US dc.subject (關鍵詞) Local Binary Patterns en_US dc.subject (關鍵詞) RealSense camera en_US dc.title (題名) 基於近紅外線影像之年齡層估算機制 zh_TW dc.title (題名) A mechanism for age classification using near-infrared images en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) [1] Burnay, S. G., T. L. Williams, and C. H. Jones, eds. Applications of thermal imaging. CRC Press, 1988.[2] 薛玉利. 基于 Gabor 变换的特征提取及其应用. MS thesis. 山东大学, 2007.[3] Ojala, Timo, Matti Pietikainen, and Topi Maenpaa. "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns." Pattern Analysis and Machine Intelligence, IEEE Transactions on 24.7 (2002): 971-987.[4] Tan, Xiaoyang, and Bill Triggs. "Enhanced local texture feature sets for face recognition under difficult lighting conditions." Analysis and Modeling of Faces and Gestures. Springer Berlin Heidelberg, 2007. 168-182.[5] Liao, Wen-Hung. "Region description using extended local ternary patterns. "Pattern Recognition (ICPR), 2010 20th International Conference on. IEEE, 2010.[6] Liao, Wen-Hung. "Commensurate dimensionality reduction for extended local ternary patterns." Pattern Recognition (ICPR), 2012 21st International Conference on. IEEE, 2012.[7] Altman, Naomi S. "An introduction to kernel and nearest-neighbor nonparametric regression." The American Statistician 46.3 (1992): 175-185.[8] Guo, Guodong, Stan Z. Li, and Kapluk Chan. "Face recognition by support vector machines." Automatic Face and Gesture Recognition, 2000. Proceedings. Fourth IEEE International Conference on. IEEE, 2000.[9] Burges, Christopher JC. "A tutorial on support vector machines for pattern recognition." Data mining and knowledge discovery 2.2 (1998): 121-167.[10] The FG-NET Aging Database, http://www.fgnet.rsunit.com/, http://www-prima.inrialpes.fr/FGnet/, 2010. [11] Ricanek Jr, Karl, and Tamirat Tesafaye. "Morph: A longitudinal image database of normal adult age-progression." Automatic Face and Gesture Recognition, 2006. FGR 2006. 7th International Conference on. IEEE, 2006.[12] MORPH Face Database, http://faceaginggroup.com/, 2010.[13] PolyU NIR Face Database, http://www4.comp.polyu.edu.hk/~biometrics/polyudb_face.htm, 2010.[14] Hsu, Rein-Lien, Mohamed Abdel-Mottaleb, and Anil K. Jain. "Face detection in color images." Pattern Analysis and Machine Intelligence, IEEE Transactions on 24.5 (2002): 696-706.[15] Yang, Ming-Hsuan, and Narendra Ahuja. "Detecting human faces in color images." Image Processing, 1998. ICIP 98. Proceedings. 1998 International Conference on. Vol. 1. IEEE, 1998.[16] Viola, Paul, and Michael Jones. "Rapid object detection using a boosted cascade of simple features." Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. Vol. 1. IEEE, 2001.[17] Lienhart, Rainer, and Jochen Maydt. "An extended set of haar-like features for rapid object detection." Image Processing. 2002. Proceedings. 2002 International Conference on. Vol. 1. IEEE, 2002.[18] Liao, Shengcai, et al. "Learning multi-scale block local binary patterns for face recognition." Advances in Biometrics. Springer Berlin Heidelberg, 2007. 828-837.[19] Fu, Yun, Guodong Guo, and Thomas S. Huang. "Age synthesis and estimation via faces: A survey." Pattern Analysis and Machine Intelligence, IEEE Transactions on 32.11 (2010): 1955-1976.[20] Jabid, Taskeed, Md Hasanul Kabir, and Oksam Chae. "Local directional pattern (LDP) for face recognition." 2010 Digest of Technical Papers International Conference on Consumer Electronics (ICCE). 2010.[21] Ahonen, Timo, Abdenour Hadid, and Matti Pietikäinen. "Face recognition with local binary patterns." Computer vision-eccv 2004. Springer Berlin Heidelberg, 2004. 469-481.[22] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed., Reading, MA: Addison-Wesley, 1992. [23] Pizer, Stephen M., et al. "Adaptive histogram equalization and its variations." Computer vision, graphics, and image processing 39.3 (1987): 355-368. [24] Zuiderveld, Karel. "Contrast limited adaptive histogram equalization." Graphics gems IV. Academic Press Professional, Inc., 1994.[25] Turk, M., and Pentland, A. Eigenfaces for recognition. Journal of Cognitive Neuroscience 3 (1991), 71–86.[26] Belhumeur, P. N., Hespanha, J., and Kriegman, D. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 7 (1997), 711–720.[27] Hafiane, Adel, Guna Seetharaman, and Bertrand Zavidovique. "Median binary pattern for textures classification." International Conference Image Analysis and Recognition. Springer, Berlin, Heidelberg, 2007.[28] Jin, Hongliang, et al. "Face detection using improved LBP under Bayesian framework." Image and Graphics (ICIG`04), Third International Conference on. IEEE, 2004.[29] Heikkilä, Marko, Matti Pietikäinen, and Cordelia Schmid. "Description of interest regions with center-symmetric local binary patterns." ICVGIP. Vol. 6. 2006.[30] Ahonen, Timo, and Matti Pietikäinen. "Soft histograms for local binary patterns." Proceedings of the Finnish signal processing symposium, FINSIG. Vol. 5. No. 9. 2007.[31] Ahonen, Timo, Abdenour Hadid, and Matti Pietikainen. "Face description with local binary patterns: Application to face recognition." IEEE transactions on pattern analysis and machine intelligence 28.12 (2006): 2037-2041.[32] Ojala, Timo, Matti Pietikainen, and David Harwood. "Performance evaluation of texture measures with classification based on Kullback discrimination of distributions." Pattern Recognition, 1994. Vol. 1-Conference A: Computer Vision & Image Processing., Proceedings of the 12th IAPR International Conference on. Vol. 1. IEEE, 1994. zh_TW