Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 利用量子行為粒子群演算法同步求解區域電離層VTEC與接收儀儀器誤差之研究
The Study of Simultaneous estimation of regional ionospheric VTEC and receiver differential code bias by using Quantum-behaved Particle Swarm Optimization
作者 鄭乃誠
貢獻者 甯方璽
Ning, Fang-Shii
鄭乃誠
關鍵詞 電離層垂直總電子含量
量子行為粒子群演算法
電離層模式
VTEC
QPSO
Ionospheric model
日期 2017
上傳時間 13-Sep-2017 15:14:43 (UTC+8)
摘要 電離層延遲是GNSS定位中存在的誤差之一,除了可以用雙頻儀器觀測來消除外,通常是建立一合適的電離層模型來進行解算消除。本研究初步階段使用IGS (The International GNSS Service) 所公布之全球電離層垂直總電子含量 (Vertical Total Electron Content, VTEC) 資料以量子行為粒子群演算法 (Quantum-behaved Particle Swarm Optimization, QPSO) 進行曲面擬合,並與最小二乘法 (Least Squares Method, LSM) 解算進行精度比較。另一方面,由於一般無幾何距組成之觀測方程式中除了有電離層延遲量外仍有衛星及接收儀的儀器延遲偏差存在,本研究第二階段使用 IGS 提供之衛星儀器延遲誤差資料將 GNSS 觀測值組成法方程式,並利用球諧函式與泰勒展開式建立觀測量模型,並利用量子行為粒子群演算法對區域電離層總電子含量與接收儀差分儀器延遲誤差進行同步求解,再進一步比較與利用IGS估計之電離層與儀器誤差資料之間成果差異,實驗成果顯示量子行為粒子群演算法對於曲面擬合之計算以及估計區域電離層總電子含量與接收儀差分儀器延遲誤差方面皆有良好之表現。
參考文獻 袁運斌,2002,『基於 GPS 的電離層監測及延遲改正理論與方法的研究』,中國科學院測量與地球物理研究所博士論文:中國。
沈長壽,資民筠,王勁松,徐寄遙,2003,『地磁寧靜日期內北半球電離層 NmF2 的結構分佈』,地球物理學報,第46卷第6期:731-735。
劉瑞源,權坤海,戴開良,1994,『國際參考電離層用於中國地區時的修正計算方法』,地球物理學報,第37卷第4期:422-432。
熊年祿,唐存琛,李行健,1999,『電離層物理概論』,武漢大學出版社,中國。
張東和,肖佐,古士芬,葉宗海,2002,『2000年4月6-8日磁暴期間電離層 TEC觀測研究』,空間科學學報,第22卷第3期:212-219。
王綬琯,劉振興,2003,『天文學空間科學』,福建教育出版社,中國。
萬衛星,甯百齊,袁洪,1998,『電離層擾動的 GPS探測』,空間科學學報,第18卷第3期:247-251。
甄衛民,吳健,曹沖,1998,『電離層不均勻性對 GPS 系統的誤差影響分析』,電波科學學報,第13卷第2期:123-126。
詹劭勳,2004,『現代衛星導航』,國立成功大學航空太空工程學系課程講義:台南。
楊銘仁,2004,『由台灣GPS 追蹤站2004 年資料建構區域性電離層模式及其影響定位精度之研究』,國立成功大學測量及空間資訊學系碩士論文:臺南。
蔡名曜,2014,『運用曲面擬合提升幾何法大地起伏值精度之研究』,國立政治大學地政學系碩士論文:臺北。
李彥廷,2011,『以類神經網路構建區域電離層模型』,國立政治大學地政學系碩士論文:臺北。
彭德熙、陳國華、楊名,2008,『台灣區域性電離層模型之估計:應用於單頻精密單點定位』,地籍測量,第廿七卷第3 期:1-22。
吳相忠,2004,『利用GPS觀測量構建台灣南部地區網格式電離層模型』,國立政治大學地政學系碩士論文:臺北。
常青,張東和,肖佐,張其善,2001,『GPS 系統硬體延遲估計方法及其在 TEC 計算中的應用』,地球物理學報,第44卷第5期:596-601。
王斐、吳曉莉、周田、李宇翔,2014,『不同Klobuchar模型參數的性能比較』,測繪學報,第43卷第11期:1151-1157。
柳景斌,2008,『基於地基 GPS 的區域電離層 TEC球冠諧分析及預報』,武漢大學大地測量學與測量工程博士論文:中國。
柳景斌、王澤民、王海軍、章紅平,2008,『利用球冠諧分析方法和GPS數據建立中國區域電離層 TEC模型』,武漢大學學報,第33卷第8期:792-795。
陳耀鐘、高書屏,2014,『利用GPS觀測量估計區域性電離層VTEC與接收儀差分硬體延遲偏差的新方法: LS-MARS』,國立中興大學土木工程學系,臺中。
陳耀鐘,2014,『利用GPS 觀測量進行區域性電離層垂直全電子含量建模與電離層電腦斷層掃描的新方法:LS-MARS』,國立中興大學土木工程學系,臺中。
林老生、克利思.理哲斯, 1999,『利用GPS觀測量構建即時的區域電離層模型之研究』,測量工程, Vol.41, No.1, pp.5-32.
葉欣豪,2013,『利用最小支持向量機進行電離層全電子含量預報之研究』,國立中興大學土木工程學系碩士論文:臺中
Van den Bergh, F., 2001, “An Analysis of Particle Swarm optimizers,” PhD Thesis. University of Pretoria
Sun, J., Feng, B., and Xu, W. B., 2004, Particle swarm optimization with particles having quantum behavior, in: IEEE Proceedings of Congress on Evolutionary Computation, 2004:325–331.
Klobuchar, J. A., 1987, Ionospheric Time-Delay Algorithm for Single Frequency GPS Users, IEEE Transactions on Aerospace And Electronic Systems, vol. AES-23, no. 3, pp. 325-331.
Klobuchar, J. A., 1991, Ionospheric effect on GPS, GPS world, vol. 2, no. 4, pp. 48-51.
Komjathy, A., 1997, Global Ionospheric Total Electron Content Mapping Using the Global Positioning System, Ph.D dissertation, Department of Geodesy and Geomatics Engineering Technical Report No. 188, University of New Brunswick, Canada.
Mannucci, A. J., Wilson, B. D., Yuan, D. N., Ho, C.H., Lindqwister, U. J., and Runge, T. F., 1998, A Global Mapping Technique for GPS-derived Ionospheric Total Electron Content Measurements, Radio Science, vol. 33, no. 3, pp.565-582.
Liu, Z., Skone, S., Gao, Y., and Komjathy, A., 2005, Ionospheric Modeling using GPS data, GPS Solutions, vol.9, no.1, pp. 63-66.
Bowhill, S. A., Satellite transmission studies of spread-F produced by artificial heating of the ionosphere, Radio Science, Volume 9, Issue 11, Pages 975–986.
Seeber, G., 2003, Satellite Geodesy, 2nd Edition, Walter de Gruyter, New York.
Paul, M. K., Brent, M. L., The ionosphere, radio navigation, and global navigation satellite systems, Advances in Space Research, 2005, 35:788-811.
Teunissen, P.J.G., 1995, The Least-square Ambiguity Decorrelation Adjustment : A Method for Fast GPS Integer Ambiguity Estimation, Journal of Geodesy, vol. 70, no. 1-2, pp. 65-82.
Schaer, S., 1999, Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System, Ph.D dissertation, Astronomical Institute, University of Bern, Switzerland.
Schaer, S., Beutler, G., Rothacher, M., and Springer, T. A., 1996, Daily Global Ionosphere Maps Based on GPS Carrier Phase Data Routinely Produce by the CODE Analysis Center, Proc. IGS Analysis Center Workgroup, Maryland, USA, pp. 181-192.
Schaer, S., Gurtner, W., and Feltens, J., 1998, IONEX: The IONophere Map Exchange Format Version 1, Proc. IGS Analysis Center Workshop, Darmstadt, Germany, pp. 233-247.
Schaer, S., Gurtner, W., and Feltens, J., 1998, IONEX Manual.Astronomical Institute, University of Berne & ESA/ESOC, Germany.
Hofmann-Wellenhof, B., Lichtenegger, H., and Collins, J., 2001, Global Positioning System: Theory and Practice, Springer-Verlag, New York.
Lanyi, G. E., T. Roth, 1988, A comparison of mapped and measured total ionospheric electron content using Global Positioning System and beacon satellites observations, Radio Science, Vol. 23: 483–492.
Kavzoglu, T., and Saka, M. H., 2005, Modelling local GPS/levelling geoid undulations using artificial neural network, Journal of Geodesy, 78: 520-527.
Kennedy J., and Eberhart R., 1995, Particle Swarm Optimization, IEEE International of first Conference on Neural Networks : 167-171.
Mannucci, A. J., Wilson, B. D., Yuan, D. N., 1998, A global mapping technique for GPS-derived ionospheric total electron content measurements, Radio Science, Vol. 33, No. 3: 565-582.
Esther, S., Nestor, Z., 1994, Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations, Radio Science, 29(3): 577-586.
Sun, J., Xu, W., and Feng, B., 2004, A global search strategy of quantum-behaved particle swarm optimization. In Cybernetics and Intelligent Systems, 2004 IEEE Conference on Vol. 1:111-116.
Xi, M., Sun, J., and Xu, W., 2008, An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position. Applied Mathematics and Computation, 205(2):751-759.
Yetkin, M., Inal, C., and Yigit, C. O., 2011, The Optimal Design of Baseline Configuration in GPS Networks by Using the Particle Swarm Optimisation Algorithm. Survey Review, 43(323):700-712.
Kao S.P., Chena Y.C., Ning, F.S., 2013, A MARS-based method for estimating regional 2-D ionospheric VTEC and receiver differential code bias Global ionospheric maps from GPS observations using modip latitude.
F. Azpilicuetaa , C. Bruninia, S.M. Radicellab, Non-parametric regional VTEC modeling with Multivariate Adaptive Regression B-Splines. Durmaz, M., Karslioglu, M. O.
Durmaz, M., Karslioglu, M.O., Nohutcu, M., Regional vtec modeling with multivariate adaptive regression splines
Liu J., Chen R., Kuusniemi H., Wang Z., Zhang H., Yang J., Mapping the regional ionospheric TEC using a spherical cap harmonic model and IGS products in high latitudes and the arctic region.
International GNSS Service, IGS. http://igscb.jpl.nasa.gov/components/prods.html.
National Aeronautics and Space Administration, NASA. http://solarscience.msfc.nasa.gov/
描述 碩士
國立政治大學
地政學系
102257029
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0102257029
資料類型 thesis
dc.contributor.advisor 甯方璽zh_TW
dc.contributor.advisor Ning, Fang-Shiien_US
dc.contributor.author (Authors) 鄭乃誠zh_TW
dc.creator (作者) 鄭乃誠zh_TW
dc.date (日期) 2017en_US
dc.date.accessioned 13-Sep-2017 15:14:43 (UTC+8)-
dc.date.available 13-Sep-2017 15:14:43 (UTC+8)-
dc.date.issued (上傳時間) 13-Sep-2017 15:14:43 (UTC+8)-
dc.identifier (Other Identifiers) G0102257029en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/112744-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 地政學系zh_TW
dc.description (描述) 102257029zh_TW
dc.description.abstract (摘要) 電離層延遲是GNSS定位中存在的誤差之一,除了可以用雙頻儀器觀測來消除外,通常是建立一合適的電離層模型來進行解算消除。本研究初步階段使用IGS (The International GNSS Service) 所公布之全球電離層垂直總電子含量 (Vertical Total Electron Content, VTEC) 資料以量子行為粒子群演算法 (Quantum-behaved Particle Swarm Optimization, QPSO) 進行曲面擬合,並與最小二乘法 (Least Squares Method, LSM) 解算進行精度比較。另一方面,由於一般無幾何距組成之觀測方程式中除了有電離層延遲量外仍有衛星及接收儀的儀器延遲偏差存在,本研究第二階段使用 IGS 提供之衛星儀器延遲誤差資料將 GNSS 觀測值組成法方程式,並利用球諧函式與泰勒展開式建立觀測量模型,並利用量子行為粒子群演算法對區域電離層總電子含量與接收儀差分儀器延遲誤差進行同步求解,再進一步比較與利用IGS估計之電離層與儀器誤差資料之間成果差異,實驗成果顯示量子行為粒子群演算法對於曲面擬合之計算以及估計區域電離層總電子含量與接收儀差分儀器延遲誤差方面皆有良好之表現。zh_TW
dc.description.tableofcontents 第一章 緒論 1
第一節 研究背景 1
第二節 研究動機及目的 4
第三節 論文架構 8
第二章 文獻回顧與理論基礎 9
第一節 電離層探究技術介紹及發展 9
第二節 衛星定位基本理論 12
第三節 電離層理論基礎 19
第四節 電離層建構模型應用 30
第五節 粒子群演算法原理 33
第六節 粒子群演算法應用文獻 40
第三章 研究方法 43
第一節 研究流程 43
第二節 研究資料 46
第三節 曲面方程式分析方法 50
第四節 同步求解 TEC與 RCDB 52
第四章 實驗成果 55
第一節 曲面方程式實驗成果與討論 55
第二節 VTEC解算成果與討論 71
第三節 RDCB解算成果與討論 73
第五章 結論與建議 77
第一節 結論 77
第二節 建議 78
參考文獻 79
一、 中文參考文獻 79
二、 外文參考文獻 81
zh_TW
dc.format.extent 2209883 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0102257029en_US
dc.subject (關鍵詞) 電離層垂直總電子含量zh_TW
dc.subject (關鍵詞) 量子行為粒子群演算法zh_TW
dc.subject (關鍵詞) 電離層模式zh_TW
dc.subject (關鍵詞) VTECen_US
dc.subject (關鍵詞) QPSOen_US
dc.subject (關鍵詞) Ionospheric modelen_US
dc.title (題名) 利用量子行為粒子群演算法同步求解區域電離層VTEC與接收儀儀器誤差之研究zh_TW
dc.title (題名) The Study of Simultaneous estimation of regional ionospheric VTEC and receiver differential code bias by using Quantum-behaved Particle Swarm Optimizationen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 袁運斌,2002,『基於 GPS 的電離層監測及延遲改正理論與方法的研究』,中國科學院測量與地球物理研究所博士論文:中國。
沈長壽,資民筠,王勁松,徐寄遙,2003,『地磁寧靜日期內北半球電離層 NmF2 的結構分佈』,地球物理學報,第46卷第6期:731-735。
劉瑞源,權坤海,戴開良,1994,『國際參考電離層用於中國地區時的修正計算方法』,地球物理學報,第37卷第4期:422-432。
熊年祿,唐存琛,李行健,1999,『電離層物理概論』,武漢大學出版社,中國。
張東和,肖佐,古士芬,葉宗海,2002,『2000年4月6-8日磁暴期間電離層 TEC觀測研究』,空間科學學報,第22卷第3期:212-219。
王綬琯,劉振興,2003,『天文學空間科學』,福建教育出版社,中國。
萬衛星,甯百齊,袁洪,1998,『電離層擾動的 GPS探測』,空間科學學報,第18卷第3期:247-251。
甄衛民,吳健,曹沖,1998,『電離層不均勻性對 GPS 系統的誤差影響分析』,電波科學學報,第13卷第2期:123-126。
詹劭勳,2004,『現代衛星導航』,國立成功大學航空太空工程學系課程講義:台南。
楊銘仁,2004,『由台灣GPS 追蹤站2004 年資料建構區域性電離層模式及其影響定位精度之研究』,國立成功大學測量及空間資訊學系碩士論文:臺南。
蔡名曜,2014,『運用曲面擬合提升幾何法大地起伏值精度之研究』,國立政治大學地政學系碩士論文:臺北。
李彥廷,2011,『以類神經網路構建區域電離層模型』,國立政治大學地政學系碩士論文:臺北。
彭德熙、陳國華、楊名,2008,『台灣區域性電離層模型之估計:應用於單頻精密單點定位』,地籍測量,第廿七卷第3 期:1-22。
吳相忠,2004,『利用GPS觀測量構建台灣南部地區網格式電離層模型』,國立政治大學地政學系碩士論文:臺北。
常青,張東和,肖佐,張其善,2001,『GPS 系統硬體延遲估計方法及其在 TEC 計算中的應用』,地球物理學報,第44卷第5期:596-601。
王斐、吳曉莉、周田、李宇翔,2014,『不同Klobuchar模型參數的性能比較』,測繪學報,第43卷第11期:1151-1157。
柳景斌,2008,『基於地基 GPS 的區域電離層 TEC球冠諧分析及預報』,武漢大學大地測量學與測量工程博士論文:中國。
柳景斌、王澤民、王海軍、章紅平,2008,『利用球冠諧分析方法和GPS數據建立中國區域電離層 TEC模型』,武漢大學學報,第33卷第8期:792-795。
陳耀鐘、高書屏,2014,『利用GPS觀測量估計區域性電離層VTEC與接收儀差分硬體延遲偏差的新方法: LS-MARS』,國立中興大學土木工程學系,臺中。
陳耀鐘,2014,『利用GPS 觀測量進行區域性電離層垂直全電子含量建模與電離層電腦斷層掃描的新方法:LS-MARS』,國立中興大學土木工程學系,臺中。
林老生、克利思.理哲斯, 1999,『利用GPS觀測量構建即時的區域電離層模型之研究』,測量工程, Vol.41, No.1, pp.5-32.
葉欣豪,2013,『利用最小支持向量機進行電離層全電子含量預報之研究』,國立中興大學土木工程學系碩士論文:臺中
Van den Bergh, F., 2001, “An Analysis of Particle Swarm optimizers,” PhD Thesis. University of Pretoria
Sun, J., Feng, B., and Xu, W. B., 2004, Particle swarm optimization with particles having quantum behavior, in: IEEE Proceedings of Congress on Evolutionary Computation, 2004:325–331.
Klobuchar, J. A., 1987, Ionospheric Time-Delay Algorithm for Single Frequency GPS Users, IEEE Transactions on Aerospace And Electronic Systems, vol. AES-23, no. 3, pp. 325-331.
Klobuchar, J. A., 1991, Ionospheric effect on GPS, GPS world, vol. 2, no. 4, pp. 48-51.
Komjathy, A., 1997, Global Ionospheric Total Electron Content Mapping Using the Global Positioning System, Ph.D dissertation, Department of Geodesy and Geomatics Engineering Technical Report No. 188, University of New Brunswick, Canada.
Mannucci, A. J., Wilson, B. D., Yuan, D. N., Ho, C.H., Lindqwister, U. J., and Runge, T. F., 1998, A Global Mapping Technique for GPS-derived Ionospheric Total Electron Content Measurements, Radio Science, vol. 33, no. 3, pp.565-582.
Liu, Z., Skone, S., Gao, Y., and Komjathy, A., 2005, Ionospheric Modeling using GPS data, GPS Solutions, vol.9, no.1, pp. 63-66.
Bowhill, S. A., Satellite transmission studies of spread-F produced by artificial heating of the ionosphere, Radio Science, Volume 9, Issue 11, Pages 975–986.
Seeber, G., 2003, Satellite Geodesy, 2nd Edition, Walter de Gruyter, New York.
Paul, M. K., Brent, M. L., The ionosphere, radio navigation, and global navigation satellite systems, Advances in Space Research, 2005, 35:788-811.
Teunissen, P.J.G., 1995, The Least-square Ambiguity Decorrelation Adjustment : A Method for Fast GPS Integer Ambiguity Estimation, Journal of Geodesy, vol. 70, no. 1-2, pp. 65-82.
Schaer, S., 1999, Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System, Ph.D dissertation, Astronomical Institute, University of Bern, Switzerland.
Schaer, S., Beutler, G., Rothacher, M., and Springer, T. A., 1996, Daily Global Ionosphere Maps Based on GPS Carrier Phase Data Routinely Produce by the CODE Analysis Center, Proc. IGS Analysis Center Workgroup, Maryland, USA, pp. 181-192.
Schaer, S., Gurtner, W., and Feltens, J., 1998, IONEX: The IONophere Map Exchange Format Version 1, Proc. IGS Analysis Center Workshop, Darmstadt, Germany, pp. 233-247.
Schaer, S., Gurtner, W., and Feltens, J., 1998, IONEX Manual.Astronomical Institute, University of Berne & ESA/ESOC, Germany.
Hofmann-Wellenhof, B., Lichtenegger, H., and Collins, J., 2001, Global Positioning System: Theory and Practice, Springer-Verlag, New York.
Lanyi, G. E., T. Roth, 1988, A comparison of mapped and measured total ionospheric electron content using Global Positioning System and beacon satellites observations, Radio Science, Vol. 23: 483–492.
Kavzoglu, T., and Saka, M. H., 2005, Modelling local GPS/levelling geoid undulations using artificial neural network, Journal of Geodesy, 78: 520-527.
Kennedy J., and Eberhart R., 1995, Particle Swarm Optimization, IEEE International of first Conference on Neural Networks : 167-171.
Mannucci, A. J., Wilson, B. D., Yuan, D. N., 1998, A global mapping technique for GPS-derived ionospheric total electron content measurements, Radio Science, Vol. 33, No. 3: 565-582.
Esther, S., Nestor, Z., 1994, Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations, Radio Science, 29(3): 577-586.
Sun, J., Xu, W., and Feng, B., 2004, A global search strategy of quantum-behaved particle swarm optimization. In Cybernetics and Intelligent Systems, 2004 IEEE Conference on Vol. 1:111-116.
Xi, M., Sun, J., and Xu, W., 2008, An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position. Applied Mathematics and Computation, 205(2):751-759.
Yetkin, M., Inal, C., and Yigit, C. O., 2011, The Optimal Design of Baseline Configuration in GPS Networks by Using the Particle Swarm Optimisation Algorithm. Survey Review, 43(323):700-712.
Kao S.P., Chena Y.C., Ning, F.S., 2013, A MARS-based method for estimating regional 2-D ionospheric VTEC and receiver differential code bias Global ionospheric maps from GPS observations using modip latitude.
F. Azpilicuetaa , C. Bruninia, S.M. Radicellab, Non-parametric regional VTEC modeling with Multivariate Adaptive Regression B-Splines. Durmaz, M., Karslioglu, M. O.
Durmaz, M., Karslioglu, M.O., Nohutcu, M., Regional vtec modeling with multivariate adaptive regression splines
Liu J., Chen R., Kuusniemi H., Wang Z., Zhang H., Yang J., Mapping the regional ionospheric TEC using a spherical cap harmonic model and IGS products in high latitudes and the arctic region.
International GNSS Service, IGS. http://igscb.jpl.nasa.gov/components/prods.html.
National Aeronautics and Space Administration, NASA. http://solarscience.msfc.nasa.gov/
zh_TW