Publications-Theses
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 以推敲可能性模式探討影響評論幫助性之因素
Factors Affecting Review Helpfulness : An Elaboration Likelihood Model Perspective作者 熊耿得
Hsiung, Keng-Te貢獻者 梁定澎<br>莊皓鈞
Liang, Ting-Peng<br>Chuang, Howard Hao-Chun
熊耿得
Hsiung, Keng-Te關鍵詞 評論幫助性
推敲可能性模式
LDA主題模型
環狀情緒模型
情感分析
Review helpfulness
Elaboration likelihood model
Latent dirichlet allocation
Circumplex model
Sentiment analysis日期 2017 上傳時間 28-Sep-2017 10:42:00 (UTC+8) 摘要 在電子商務中,評論會影響消費者的購買決策,透過評論幫助性可以篩選出關鍵的評論,以利消費者進行決策。本研究以推敲可能性模式作為研究架構,透過文字探勘挖掘評論的文本特性來探討影響幫助性之要素,中央線索除了評論長度與可讀性外,利用LDA主題模型衡量評論主題廣度;周邊線索則是透過環狀情緒模型進行情感分析,並透過評論者排名來衡量來源可信度,利用亞馬遜商店中的資料進行驗證分析。結果發現,消費者在判斷評論幫助性時,會參考中央以及周邊線索。具備高論點品質的中央線索將有效提升評論幫助性;周邊線索整體而言,證實了社會中存在負向偏誤,具備喚起度的負向情感較容易提升評論幫助性,而評論是否被認為有幫助確實會受到評論者的排名所影響。進階分析結果顯示,周邊的情感效果會受到評論者排名高低的影響,前段評論者應保持中立避免帶有個人情緒;中段評論者的評論幫助性會隨著情緒喚起度而增加;後段評論者則需要增加自身的負向情感,才能夠對於評論幫助性有正向影響。
Online reviews are important factors in consumers’ purchase decision. The helpfulness of reviews allows consumers to quickly identify useful reviews. The purpose of this study is to investigate the nature of online reviews that affect their helpfulness through the lens of the elaboration likelihood model. For the central cues, we adopt latent dirichlet allocation to measure review breadth in addition to review length and review readability. For the peripheral cues, we use the sentiment analysis based on the circumplex model to catch the emotion effect and use the ranking of the reviewers to measure the source credibility. We used a dataset collected from Amazon.com to evaluate our model. The result suggests that consumers focus both central and peripheral cues when they read reviews. Consumers care about the length, breadth and readability of reviews associated with the central route, and the emotional effects associated with the peripheral route. In the advanced research, we split our sample into 3 groups by their ranking of the reviewers. We found that the top reviewers should keep neutral and avoid personal feelings to make their reviews more helpful; the middle reviewers can use more arousal words to improve their review helpfulness; the bottom reviewers must increase their emotional valence strength, especially the negative emotion to higher the perceived review helpfulness.參考文獻 王韋堯, 黃詩珮, & 劉怡寧. (2012). 消費品廣告設計之情緒效價與喚起分析. 設計學報 (Journal of Design), 17(3). 陳怡安. (2008). 口碑基本概論: 以口碑領域文獻為依據. 黃俊堯, & 柳秉佑. (2016). 消費者線上口碑與評論研究:國內外相關文獻回顧與討論. 臺大管理論叢, 26(3), 215 - 256. Arndt, J. (1967). Role of product-related conversations in the diffusion of a new product. Journal of Marketing Research, 4(3), 291-295. Baek, H., Ahn, J., & Choi, Y. (2012). Helpfulness of Online Consumer Reviews: Readers` Objectives and Review Cues. International Journal of Electronic Commerce, 17(2), 99-126. Bellezza, F. S., Greenwald, A. G., & Banaji, M. R. (1986). Words high and low in pleasantness as rated by male and female college students. Behavior Research Methods, Instruments, & Computers, 18(3), 299-303. Berger, J. (2011). Arousal Increases Social Transmission of Information. Psychological Science, 22(7), 891-893. Berger, J., & Milkman, K. L. (2012). What makes online content viral? Journal of Marketing Research, 49(2), 192-205. Bickart, B., & Schindler, R. M. (2001). Internet forums as influential sources of consumer information. Journal of Interactive Marketing, 15(3), 31-40. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022. Bradley, M. M., & Lang, P. J. (1999). Affective norms for English words (ANEW): Instruction manual and affective ratings. Retrieved from Brysbaert, M., New, B., & Keuleers, E. (2012). Adding part-of-speech information to the SUBTLEX-US word frequencies. Behavior research methods, 44(4), 991-997. Cao, Q., Duan, W., & Gan, Q. (2011). Exploring determinants of voting for the “helpfulness” of online user reviews: A text mining approach. Decision Support Systems, 50(2), 511-521. Chang, J., Boyd-Graber, J. L., Gerrish, S., Wang, C., & Blei, D. M. (2009). Reading tea leaves: How humans interpret topic models. Paper presented at the Nips.Chen, X., Sheng, J., Wang, X., & Deng, J. (2016). Exploring Determinants of Attraction and Helpfulness of Online Product Review: A Consumer Behaviour Perspective. Discrete Dynamics in Nature and Society, 2016(1), 1-19. Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of Marketing Research, 43(3), 345-354. Chung, H. C., Lee, H., Koo, C., & Chung, N. (2017). Which Is More Important in Online Review Usefulness, Heuristic or Systematic Cue? Information and Communication Technologies in Tourism 2017 (pp. 581-594): Springer.Cox, D. F. (1967). Risk taking and information handling in consumer behavior. Day, G. S. (1971). Attitude change, media and word of mouth. Journal of Advertising Research. Dong, R., Schaal, M., O’Mahony, M. P., McCarthy, K., & Smyth, B. (2012). Harnessing the Experience Web to Support User-Generated Product Reviews. Paper presented at the 20th International Conference on Case-Based Reasoning, Lyon, France. eMarketer. (2016). Worldwide Retail Ecommerce Sales Will Reach $1.915 Trillion This Year. Retrieved from https://www.emarketer.com/Article/Worldwide-Retail-Ecommerce-Sales-Will-Reach-1915-trillion-This-Year/1014369Feldman, R. (2013). Techniques and applications for sentiment analysis. Communications of the ACM, 56(4), 82-89. Flesch, R. (1948). A new readability yardstick. Journal of applied psychology, 32(3), 221. Forman, C., Ghose, A., & Wiesenfeld, B. (2008). Examining the relationship between reviews and sales: The role of reviewer identity disclosure in electronic markets. Information Systems Research, 19(3), 291-313. Fox, E. (2008). Emotion science cognitive and neuroscientific approaches to understanding human emotions: Palgrave Macmillan.Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National academy of Sciences, 101(suppl 1), 5228-5235. Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic word-of-mouth via consumer-opinion platforms: what motivates consumers to articulate themselves on the internet? Journal of Interactive Marketing, 18(1), 38-52. Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments: Conceptual foundations. The Journal of Marketing, 50-68. Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. Paper presented at the Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining.Hu, N., Liu, L., & Zhang, J. J. (2008). Do online reviews affect product sales? The role of reviewer characteristics and temporal effects. Information Technology and Management, 9(3), 201-214. Hwang, S.-Y., Lai, C.-Y., Chang, S., & Jiang, J.-J. (2015). The identification of noteworthy hotel reviews for hotel management. Pacific Asia Journal of the Association for Information Systems, 6(5). Kiecker, P., & Cowles, D. (2002). Interpersonal communication and personal influence on the Internet: A framework for examining online word-of-mouth. Journal of Euromarketing, 11(2), 71-88. Kuan, K. K. Y., Smith, J., Liu, N., & Poon, S. K. (2016). The Role of Review Arousal in Online Reviews: Insights from EEG Data. Paper presented at the The Pacific Asia Conference on Information Systems (PACIS), Chia-Yi, Taiwan. Kuperman, V., Stadthagen-Gonzalez, H., & Brysbaert, M. (2012). Age-of-acquisition ratings for 30,000 English words. Behavior research methods, 44(4), 978-990. Laroche, M., Babin, B. J., Lee, Y.-K., Kim, E.-J., & Griffin, M. (2005). Modeling consumer satisfaction and word-of-mouth: restaurant patronage in Korea. Journal of Services Marketing, 19(3), 133-139. Latent Dirichlet allocation - Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Latent_Dirichlet_allocationLee, C. M., Narayanan, S. S., & Pieraccini, R. (2002). Combining acoustic and language information for emotion recognition. Paper presented at the INTERSPEECH.Liang, T.-P., Li, X., Yang, C.-T., & Wang, M. (2015). What in Consumer Reviews Affects the Sales of Mobile Apps: A Multifacet Sentiment Analysis Approach. International Journal of Electronic Commerce, 20(2), 236-260. Luan, P., Zhang, N., & Han, Y. (2014). The Study on Influences of Online Review Helpfulness. Paper presented at the The Pacific Asia Conference on Information Systems, Chengdu, China. Mankad, S., Han, H. S., Goh, J., & Gavirneni, S. (2016). Understanding Online Hotel Reviews Through Automated Text Analysis. Service Science, 8(2), 124-138. Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology: the MIT Press.Mousavizadeh, M., Koohikamali, M., & Salehan, M. (2015). The Effect of Central and Peripheral Cues on Online Review Helpfulness: A Comparison between Functional and Expressive Products. ICIS. Mudambi, S. M., & Schuff, D. (2010). What Makes a Helpful Online Review? A Study of Customer Reviews on Amazon.com. MIS Quarterly, 34(1), 185-200. Nielsen. (2015). Global Trust in Advertising Report. Retrieved from https://www.nielsen.com/content/dam/nielsenglobal/apac/docs/reports/2015/nielsen-global-trust-in-advertising-report-september-2015.pdfNimon, K. F., & Oswald, F. L. (2013). Understanding the results of multiple linear regression: Beyond standardized regression coefficients. Organizational Research Methods, 16(4), 650-674. Palese, B., & Piccoli, G. (2016). Online Reviews as a Measure of Service Quality. Paper presented at the 2016 Pre-ICIS SIGDSA/IFIP WG8.3 Symposium, Dublin, Ireland. Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1-135. Peng, C.-H., Yin, D., Wei, C.-P., & Zhang, H. (2014). How and when review length and emotional intensity influence review helpfulness: Empirical evidence from Epinions. com. Petty, R. E., Cacioppo, J. T., & Goldman, R. (1981). Personal involvement as a determinant of argument-based persuasion. Journal of Personality and Social Psychology, 41(5), 847. Petty, R. E., Cacioppo, J. T., & Schumann, D. (1983). Central and peripheral routes to advertising effectiveness: The moderating role of involvement. Journal of consumer research, 10(2), 135-146. Rozin, P., & Royzman, E. B. (2001). Negativity Bias, Negativity Dominance, and Contagion. Personality and Social Psychology Review, 5(4), 296-320. Russell, J. A. (1980). A circumplex model of affect. Journal of Personalityand Social Psychology, 39(6), 1171-1178. Salehan, M., & Kim, D. J. (2016). Predicting the Performance of Online Consumer Reviews: A Sentiment Mining Approach to Big Data Analytics. Decision Support Systems, 81(C), 30-40. Siering, M., & Muntermann, J. (2013). What Drives the Helpfulness of Online Product Reviews? From Stars to Facts and Emotions. Paper presented at the WIRTSCHAFTSINFORMATIK, Atlanta, GA. Skowronski, J. J., & Carlston, D. E. (1989). Negativity and extremity biases in impression formation: A review of explanations. Psychological bulletin, 105(1), 131. Steyvers, M., & Griffiths, T. (2007). Probabilistic topic models. Handbook of latent semantic analysis, 427(7), 424-440. Wang, X. S., Mai, F., & Chiang, R. H. L. (2013). Database Submission—Market Dynamics and User-Generated Content About Tablet Computers. Marketing Science, 33(3), 449-458. Warriner, A. B., Kuperman, V., & Brysbaert, M. (2013). Norms of valence, arousal, and dominance for 13,915 English lemmas. Behavior research methods, 45(4), 1191-1207. Yin, D., Bond, S. D., & Zhang, H. (2014). ANXIOUS OR ANGRY? EFFECTS OF DISCRETE EMOTIONS ON THE PERCEIVED HELPFULNESS OF ONLINE REVIEWS. MIS Quarterly, 38(2), 539-560. Yin, G., Wei, L., Xu, W., & Chen, M. (2014). Exploring heuristic cues for consumer perceptions of online reviews helpfulness: The case of yelp.com. Paper presented at the The Pacific Asia Conference on Information Systems, Chengdu, China. Yin, G., Zhang, Q., & Li, Y. (2014). Effects of Emotional Valence and Arousal on Consumer Perceptions of Online Review Helpfulness. Paper presented at the Americas Conference on Information Systems, Savannah, US. Zhu, L., Yin, G., & He, W. (2014). Is This Opinion Leader’s Review Useful? Peripheral Cues for Online Review Helpfulness. Journal of Electronic Commerce Research, 15(4), 267-280. 描述 碩士
國立政治大學
資訊管理學系
105356015資料來源 http://thesis.lib.nccu.edu.tw/record/#G0105356015 資料類型 thesis dc.contributor.advisor 梁定澎<br>莊皓鈞 zh_TW dc.contributor.advisor Liang, Ting-Peng<br>Chuang, Howard Hao-Chun en_US dc.contributor.author (Authors) 熊耿得 zh_TW dc.contributor.author (Authors) Hsiung, Keng-Te en_US dc.creator (作者) 熊耿得 zh_TW dc.creator (作者) Hsiung, Keng-Te en_US dc.date (日期) 2017 en_US dc.date.accessioned 28-Sep-2017 10:42:00 (UTC+8) - dc.date.available 28-Sep-2017 10:42:00 (UTC+8) - dc.date.issued (上傳時間) 28-Sep-2017 10:42:00 (UTC+8) - dc.identifier (Other Identifiers) G0105356015 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/113128 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 資訊管理學系 zh_TW dc.description (描述) 105356015 zh_TW dc.description.abstract (摘要) 在電子商務中,評論會影響消費者的購買決策,透過評論幫助性可以篩選出關鍵的評論,以利消費者進行決策。本研究以推敲可能性模式作為研究架構,透過文字探勘挖掘評論的文本特性來探討影響幫助性之要素,中央線索除了評論長度與可讀性外,利用LDA主題模型衡量評論主題廣度;周邊線索則是透過環狀情緒模型進行情感分析,並透過評論者排名來衡量來源可信度,利用亞馬遜商店中的資料進行驗證分析。結果發現,消費者在判斷評論幫助性時,會參考中央以及周邊線索。具備高論點品質的中央線索將有效提升評論幫助性;周邊線索整體而言,證實了社會中存在負向偏誤,具備喚起度的負向情感較容易提升評論幫助性,而評論是否被認為有幫助確實會受到評論者的排名所影響。進階分析結果顯示,周邊的情感效果會受到評論者排名高低的影響,前段評論者應保持中立避免帶有個人情緒;中段評論者的評論幫助性會隨著情緒喚起度而增加;後段評論者則需要增加自身的負向情感,才能夠對於評論幫助性有正向影響。 zh_TW dc.description.abstract (摘要) Online reviews are important factors in consumers’ purchase decision. The helpfulness of reviews allows consumers to quickly identify useful reviews. The purpose of this study is to investigate the nature of online reviews that affect their helpfulness through the lens of the elaboration likelihood model. For the central cues, we adopt latent dirichlet allocation to measure review breadth in addition to review length and review readability. For the peripheral cues, we use the sentiment analysis based on the circumplex model to catch the emotion effect and use the ranking of the reviewers to measure the source credibility. We used a dataset collected from Amazon.com to evaluate our model. The result suggests that consumers focus both central and peripheral cues when they read reviews. Consumers care about the length, breadth and readability of reviews associated with the central route, and the emotional effects associated with the peripheral route. In the advanced research, we split our sample into 3 groups by their ranking of the reviewers. We found that the top reviewers should keep neutral and avoid personal feelings to make their reviews more helpful; the middle reviewers can use more arousal words to improve their review helpfulness; the bottom reviewers must increase their emotional valence strength, especially the negative emotion to higher the perceived review helpfulness. en_US dc.description.tableofcontents 第一章 緒論 1第一節 研究背景 1第二節 研究目的 3第三節 研究流程 4第二章 文獻探討 5第一節 網路口碑的發展 5第二節 評論幫助性 7第三節 推敲可能性模式 10第四節 LDA主題模型 14第五節 情感分析 16第三章 研究架構與假說 21第一節 研究架構 21第二節 研究假說 22第四章 研究方法與資料 25第一節 次級資料分析 25第二節 資料來源與變數說明 25第三節 資料處理 26一、 前處理 26二、 變數處理 28三、 變數範例 32第四節 分析模型 33第五章 研究結果 35第一節 分析結果 35一、 評論之中央線索 36二、 評論之周邊線索 36第二節 進階探討及分析 38一、 不同來源可信度分析 38二、 中央與周邊線索比較 42第六章 結論 44第一節 研究發現 44第二節 研究貢獻 46一、 學術貢獻 46二、 實務貢獻 46第三節 研究限制與未來建議 47參考文獻 48 zh_TW dc.format.extent 4015130 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0105356015 en_US dc.subject (關鍵詞) 評論幫助性 zh_TW dc.subject (關鍵詞) 推敲可能性模式 zh_TW dc.subject (關鍵詞) LDA主題模型 zh_TW dc.subject (關鍵詞) 環狀情緒模型 zh_TW dc.subject (關鍵詞) 情感分析 zh_TW dc.subject (關鍵詞) Review helpfulness en_US dc.subject (關鍵詞) Elaboration likelihood model en_US dc.subject (關鍵詞) Latent dirichlet allocation en_US dc.subject (關鍵詞) Circumplex model en_US dc.subject (關鍵詞) Sentiment analysis en_US dc.title (題名) 以推敲可能性模式探討影響評論幫助性之因素 zh_TW dc.title (題名) Factors Affecting Review Helpfulness : An Elaboration Likelihood Model Perspective en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) 王韋堯, 黃詩珮, & 劉怡寧. (2012). 消費品廣告設計之情緒效價與喚起分析. 設計學報 (Journal of Design), 17(3). 陳怡安. (2008). 口碑基本概論: 以口碑領域文獻為依據. 黃俊堯, & 柳秉佑. (2016). 消費者線上口碑與評論研究:國內外相關文獻回顧與討論. 臺大管理論叢, 26(3), 215 - 256. Arndt, J. (1967). Role of product-related conversations in the diffusion of a new product. Journal of Marketing Research, 4(3), 291-295. Baek, H., Ahn, J., & Choi, Y. (2012). Helpfulness of Online Consumer Reviews: Readers` Objectives and Review Cues. International Journal of Electronic Commerce, 17(2), 99-126. Bellezza, F. S., Greenwald, A. G., & Banaji, M. R. (1986). Words high and low in pleasantness as rated by male and female college students. Behavior Research Methods, Instruments, & Computers, 18(3), 299-303. Berger, J. (2011). Arousal Increases Social Transmission of Information. Psychological Science, 22(7), 891-893. Berger, J., & Milkman, K. L. (2012). What makes online content viral? Journal of Marketing Research, 49(2), 192-205. Bickart, B., & Schindler, R. M. (2001). Internet forums as influential sources of consumer information. Journal of Interactive Marketing, 15(3), 31-40. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022. Bradley, M. M., & Lang, P. J. (1999). Affective norms for English words (ANEW): Instruction manual and affective ratings. Retrieved from Brysbaert, M., New, B., & Keuleers, E. (2012). Adding part-of-speech information to the SUBTLEX-US word frequencies. Behavior research methods, 44(4), 991-997. Cao, Q., Duan, W., & Gan, Q. (2011). Exploring determinants of voting for the “helpfulness” of online user reviews: A text mining approach. Decision Support Systems, 50(2), 511-521. Chang, J., Boyd-Graber, J. L., Gerrish, S., Wang, C., & Blei, D. M. (2009). Reading tea leaves: How humans interpret topic models. Paper presented at the Nips.Chen, X., Sheng, J., Wang, X., & Deng, J. (2016). Exploring Determinants of Attraction and Helpfulness of Online Product Review: A Consumer Behaviour Perspective. Discrete Dynamics in Nature and Society, 2016(1), 1-19. Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of Marketing Research, 43(3), 345-354. Chung, H. C., Lee, H., Koo, C., & Chung, N. (2017). Which Is More Important in Online Review Usefulness, Heuristic or Systematic Cue? Information and Communication Technologies in Tourism 2017 (pp. 581-594): Springer.Cox, D. F. (1967). Risk taking and information handling in consumer behavior. Day, G. S. (1971). Attitude change, media and word of mouth. Journal of Advertising Research. Dong, R., Schaal, M., O’Mahony, M. P., McCarthy, K., & Smyth, B. (2012). Harnessing the Experience Web to Support User-Generated Product Reviews. Paper presented at the 20th International Conference on Case-Based Reasoning, Lyon, France. eMarketer. (2016). Worldwide Retail Ecommerce Sales Will Reach $1.915 Trillion This Year. Retrieved from https://www.emarketer.com/Article/Worldwide-Retail-Ecommerce-Sales-Will-Reach-1915-trillion-This-Year/1014369Feldman, R. (2013). Techniques and applications for sentiment analysis. Communications of the ACM, 56(4), 82-89. Flesch, R. (1948). A new readability yardstick. Journal of applied psychology, 32(3), 221. Forman, C., Ghose, A., & Wiesenfeld, B. (2008). Examining the relationship between reviews and sales: The role of reviewer identity disclosure in electronic markets. Information Systems Research, 19(3), 291-313. Fox, E. (2008). Emotion science cognitive and neuroscientific approaches to understanding human emotions: Palgrave Macmillan.Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National academy of Sciences, 101(suppl 1), 5228-5235. Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic word-of-mouth via consumer-opinion platforms: what motivates consumers to articulate themselves on the internet? Journal of Interactive Marketing, 18(1), 38-52. Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments: Conceptual foundations. The Journal of Marketing, 50-68. Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. Paper presented at the Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining.Hu, N., Liu, L., & Zhang, J. J. (2008). Do online reviews affect product sales? The role of reviewer characteristics and temporal effects. Information Technology and Management, 9(3), 201-214. Hwang, S.-Y., Lai, C.-Y., Chang, S., & Jiang, J.-J. (2015). The identification of noteworthy hotel reviews for hotel management. Pacific Asia Journal of the Association for Information Systems, 6(5). Kiecker, P., & Cowles, D. (2002). Interpersonal communication and personal influence on the Internet: A framework for examining online word-of-mouth. Journal of Euromarketing, 11(2), 71-88. Kuan, K. K. Y., Smith, J., Liu, N., & Poon, S. K. (2016). The Role of Review Arousal in Online Reviews: Insights from EEG Data. Paper presented at the The Pacific Asia Conference on Information Systems (PACIS), Chia-Yi, Taiwan. Kuperman, V., Stadthagen-Gonzalez, H., & Brysbaert, M. (2012). Age-of-acquisition ratings for 30,000 English words. Behavior research methods, 44(4), 978-990. Laroche, M., Babin, B. J., Lee, Y.-K., Kim, E.-J., & Griffin, M. (2005). Modeling consumer satisfaction and word-of-mouth: restaurant patronage in Korea. Journal of Services Marketing, 19(3), 133-139. Latent Dirichlet allocation - Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Latent_Dirichlet_allocationLee, C. M., Narayanan, S. S., & Pieraccini, R. (2002). Combining acoustic and language information for emotion recognition. Paper presented at the INTERSPEECH.Liang, T.-P., Li, X., Yang, C.-T., & Wang, M. (2015). What in Consumer Reviews Affects the Sales of Mobile Apps: A Multifacet Sentiment Analysis Approach. International Journal of Electronic Commerce, 20(2), 236-260. Luan, P., Zhang, N., & Han, Y. (2014). The Study on Influences of Online Review Helpfulness. Paper presented at the The Pacific Asia Conference on Information Systems, Chengdu, China. Mankad, S., Han, H. S., Goh, J., & Gavirneni, S. (2016). Understanding Online Hotel Reviews Through Automated Text Analysis. Service Science, 8(2), 124-138. Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology: the MIT Press.Mousavizadeh, M., Koohikamali, M., & Salehan, M. (2015). The Effect of Central and Peripheral Cues on Online Review Helpfulness: A Comparison between Functional and Expressive Products. ICIS. Mudambi, S. M., & Schuff, D. (2010). What Makes a Helpful Online Review? A Study of Customer Reviews on Amazon.com. MIS Quarterly, 34(1), 185-200. Nielsen. (2015). Global Trust in Advertising Report. Retrieved from https://www.nielsen.com/content/dam/nielsenglobal/apac/docs/reports/2015/nielsen-global-trust-in-advertising-report-september-2015.pdfNimon, K. F., & Oswald, F. L. (2013). Understanding the results of multiple linear regression: Beyond standardized regression coefficients. Organizational Research Methods, 16(4), 650-674. Palese, B., & Piccoli, G. (2016). Online Reviews as a Measure of Service Quality. Paper presented at the 2016 Pre-ICIS SIGDSA/IFIP WG8.3 Symposium, Dublin, Ireland. Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1-135. Peng, C.-H., Yin, D., Wei, C.-P., & Zhang, H. (2014). How and when review length and emotional intensity influence review helpfulness: Empirical evidence from Epinions. com. Petty, R. E., Cacioppo, J. T., & Goldman, R. (1981). Personal involvement as a determinant of argument-based persuasion. Journal of Personality and Social Psychology, 41(5), 847. Petty, R. E., Cacioppo, J. T., & Schumann, D. (1983). Central and peripheral routes to advertising effectiveness: The moderating role of involvement. Journal of consumer research, 10(2), 135-146. Rozin, P., & Royzman, E. B. (2001). Negativity Bias, Negativity Dominance, and Contagion. Personality and Social Psychology Review, 5(4), 296-320. Russell, J. A. (1980). A circumplex model of affect. Journal of Personalityand Social Psychology, 39(6), 1171-1178. Salehan, M., & Kim, D. J. (2016). Predicting the Performance of Online Consumer Reviews: A Sentiment Mining Approach to Big Data Analytics. Decision Support Systems, 81(C), 30-40. Siering, M., & Muntermann, J. (2013). What Drives the Helpfulness of Online Product Reviews? From Stars to Facts and Emotions. Paper presented at the WIRTSCHAFTSINFORMATIK, Atlanta, GA. Skowronski, J. J., & Carlston, D. E. (1989). Negativity and extremity biases in impression formation: A review of explanations. Psychological bulletin, 105(1), 131. Steyvers, M., & Griffiths, T. (2007). Probabilistic topic models. Handbook of latent semantic analysis, 427(7), 424-440. Wang, X. S., Mai, F., & Chiang, R. H. L. (2013). Database Submission—Market Dynamics and User-Generated Content About Tablet Computers. Marketing Science, 33(3), 449-458. Warriner, A. B., Kuperman, V., & Brysbaert, M. (2013). Norms of valence, arousal, and dominance for 13,915 English lemmas. Behavior research methods, 45(4), 1191-1207. Yin, D., Bond, S. D., & Zhang, H. (2014). ANXIOUS OR ANGRY? EFFECTS OF DISCRETE EMOTIONS ON THE PERCEIVED HELPFULNESS OF ONLINE REVIEWS. MIS Quarterly, 38(2), 539-560. Yin, G., Wei, L., Xu, W., & Chen, M. (2014). Exploring heuristic cues for consumer perceptions of online reviews helpfulness: The case of yelp.com. Paper presented at the The Pacific Asia Conference on Information Systems, Chengdu, China. Yin, G., Zhang, Q., & Li, Y. (2014). Effects of Emotional Valence and Arousal on Consumer Perceptions of Online Review Helpfulness. Paper presented at the Americas Conference on Information Systems, Savannah, US. Zhu, L., Yin, G., & He, W. (2014). Is This Opinion Leader’s Review Useful? Peripheral Cues for Online Review Helpfulness. Journal of Electronic Commerce Research, 15(4), 267-280. zh_TW