Publications-Theses
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 應用機器學習於標準普爾指數期貨
An application of machine learning to Standard & Poor`s 500 index future.作者 林雋鈜
Lin, Jyun-Hong貢獻者 蔡瑞煌
Tsaih, Rua-Huan
林雋鈜
Lin, Jyun-Hong關鍵詞 機器學習
類神經網路
圖形處理器
標準普爾500指數
期貨市場
張量流
VIX指數
Machine learning
Artificial neural network
GPU
S&P500
Futures market
TensorFlow
VIX index日期 2017 上傳時間 2-Oct-2017 10:15:01 (UTC+8) 摘要 本系統係藉由分析歷史交易資料來預測S&P500期貨市場之漲幅。 我們改進了Tsaih et al. (1998)提出的混和式AI系統。 該系統結合了Rule Base 系統以及類神經網路作為其預測之機制。我們針對該系統在以下幾點進行改善:(1) 將原本的日期資料改為使用分鐘資料作為輸入。(2) 本研究採用了“移動視窗”的技術,在移動視窗的概念下,每一個視窗我們希望能夠在60分鐘內訓練完成。(3)在擴增了額外的變數 – VIX價格做為系統的輸入。(4) 由於運算量上升,因此本研究利用TensorFlow 以及GPU運算來改進系統之運作效能。我們發現VIX變數確實可以改善系統之預測精準度,但訓練的時間雖然平均低於60分鐘,但仍有部分視窗的時間會小幅超過60分鐘。
The system is made to predict the Futures’ trend through analyzing the transaction data in the past, and gives advices to the investors who are hesitating to make decisions. We improved the system proposed by Tsaih et al. (1998), which was called hybrid AI system. It was combined with rule-based system and artificial neural network system, which can give suggestions depends on the past data. We improved the hybrid system with the following aspects: (1) The index data are changed from daily-based in into the minute-based in this study. (2) The “moving-window” mechanism is adopted in this study. For each window, we hope we can finish training in 60 minutes. (3) There is one extra variable VIX, which is calculated by the VIX in this study. (4) Due to the more computation demand, TensorFlow and GPU computing is applied in our system.We discover that the VIX can obviously has positively influence of the predicting performance of our proposed system. The average training time is lower than 60 minutes, however, some of the windows still cost more than 60 minutes to train.參考文獻 1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. “TensorFlow: Large-scale machine learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016.2. Arner, D. W., Barberis, J., & Buckley, R. P., “The Evolution of Fintech: A New Post-Crisis Paradigm?”, 2015.3. Babcock, B., Datar, M., & Motwani, R. “Sampling from a moving window over streaming data,” Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics, January 2002, pp. 633-634.4. Bartlett, M. S., Littlewort, G., Frank, M., Lainscsek, C., Fasel, I., & Movellan, J., “Recognizing facial expression: machine learning and application to spontaneous behavior,” Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference, Vol. 2, June 2005, pp. 568-573.5. Catanzaro, B., Sundaram, N., & Keutzer, K., “Fast support vector machine training and classification on graphics processors,” Proceedings of the 25th international conference on Machine learning. ACM, July 2008, pp. 104-111.6. Chen, A. S., Leung, M. T., & Daouk, H., “Application of neural networks to an emerging financial market: forecasting and trading the Taiwan Stock Index.” Computers & Operations Research 30(6), 2003, pp. 901-923.7. Clark, J, “Google Turning Its Lucrative Web Search Over to AI Machines,” Bloomberg Technology, August 2015 (available online at https://www.bloomberg.com/news/articles/2015-10-26/google-turning-its-lucrative-web-search-over-to-ai-machines).8. Cohen, W. W., Machine Learning Proceedings 1994: Proceedings of the Eighth, International Conference. Morgan Kaufmann., 2017.9. Google Brain, “TensorFlow,” Google Brain, 2017, available online at https://www.TensorFlow.org/.10. Hull, J. C., Options, futures, and other derivatives. Pearson Education India, 2006.11. Heakal R., “Futures Fundamentals: Characteristics”, Investopedia (available online at http://www.investopedia.com/university/futures/futures4.asp).12. Hornik, K., Stinchcombe, M., & White, H., “Multilayer feedforward networks are universal approximators,” Neural networks, 2(5), 1989, pp359-366.13. Kashani, M. N., Aminian, J., Shahhosseini, S., & Farrokhi, M., “Dynamic crude oil fouling prediction in industrial preheaters using optimized ANN based moving window technique,” Chemical Engineering Research and Design, 90(7), 2012, pp. 938-949.14. Metz C., “TensorFlow, Google’s Open Source AI, Signals Big Changes in Hardware Too,” Wired.com, November 2015 (available online at https://www.wired.com/2015/11/googles-open-source-ai-TensorFlow-signals-fast-changing-hardware-world/).15. Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., & Phillips, J. C. “GPU computing,” Proceedings of the IEEE, 96(5), 2008, pp. 879-899.16. Rampasek, L., & Goldenberg, A., “TensorFlow: Biology’s gateway to deep learning?,” Cell systems, 2(1), 2016, pp. 12-14.17. Scherer, K. R., “Studying the emotion-antecedent appraisal process: An expert system approach,” Cognition & Emotion, 7(3-4), 1993, pp. 325-355. 18. Stoll, H. R., & Whaley, R. E., “Commodity index investing and commodity futures prices,” 2015.19. Thomson Reuters, “Google`s AI beats human champion at Go,” CBC News, January 2016 (available online at http://www.cbc.ca/news/technology/alphago-ai-1.3422347).20. Tsaih, R. R., “The softening learning procedure,” Mathematical and computer modelling, 18(8), 1993, pp. 61-64.21. Tsaih, R. R., “Reasoning neural networks,”. Mathematics of Neural Networks, 1997, pp. 366-371.22. Tsaih, R., Hsu, Y., & Lai, C. C., “Forecasting S&P 500 stock index futures with a hybrid AI system,” Decision Support Systems, 23(2), 1998, pp. 161-174.23. Whaley, R. E., “Understanding the VIX,” The Journal of Portfolio Management, 35(3), 2009, pp. 98-105.24. Yadan, O., Adams, K., Taigman, Y., & Ranzato, M. A., “Multi-gpu training of convnets,” arXiv preprint arXiv:1312.5853, 2013.25. ZhaoZhi-Ming, Overview of Futures,Winson Taipei, 1993. 描述 碩士
國立政治大學
資訊管理學系
104356036資料來源 http://thesis.lib.nccu.edu.tw/record/#G0104356036 資料類型 thesis dc.contributor.advisor 蔡瑞煌 zh_TW dc.contributor.advisor Tsaih, Rua-Huan en_US dc.contributor.author (Authors) 林雋鈜 zh_TW dc.contributor.author (Authors) Lin, Jyun-Hong en_US dc.creator (作者) 林雋鈜 zh_TW dc.creator (作者) Lin, Jyun-Hong en_US dc.date (日期) 2017 en_US dc.date.accessioned 2-Oct-2017 10:15:01 (UTC+8) - dc.date.available 2-Oct-2017 10:15:01 (UTC+8) - dc.date.issued (上傳時間) 2-Oct-2017 10:15:01 (UTC+8) - dc.identifier (Other Identifiers) G0104356036 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/113286 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 資訊管理學系 zh_TW dc.description (描述) 104356036 zh_TW dc.description.abstract (摘要) 本系統係藉由分析歷史交易資料來預測S&P500期貨市場之漲幅。 我們改進了Tsaih et al. (1998)提出的混和式AI系統。 該系統結合了Rule Base 系統以及類神經網路作為其預測之機制。我們針對該系統在以下幾點進行改善:(1) 將原本的日期資料改為使用分鐘資料作為輸入。(2) 本研究採用了“移動視窗”的技術,在移動視窗的概念下,每一個視窗我們希望能夠在60分鐘內訓練完成。(3)在擴增了額外的變數 – VIX價格做為系統的輸入。(4) 由於運算量上升,因此本研究利用TensorFlow 以及GPU運算來改進系統之運作效能。我們發現VIX變數確實可以改善系統之預測精準度,但訓練的時間雖然平均低於60分鐘,但仍有部分視窗的時間會小幅超過60分鐘。 zh_TW dc.description.abstract (摘要) The system is made to predict the Futures’ trend through analyzing the transaction data in the past, and gives advices to the investors who are hesitating to make decisions. We improved the system proposed by Tsaih et al. (1998), which was called hybrid AI system. It was combined with rule-based system and artificial neural network system, which can give suggestions depends on the past data. We improved the hybrid system with the following aspects: (1) The index data are changed from daily-based in into the minute-based in this study. (2) The “moving-window” mechanism is adopted in this study. For each window, we hope we can finish training in 60 minutes. (3) There is one extra variable VIX, which is calculated by the VIX in this study. (4) Due to the more computation demand, TensorFlow and GPU computing is applied in our system.We discover that the VIX can obviously has positively influence of the predicting performance of our proposed system. The average training time is lower than 60 minutes, however, some of the windows still cost more than 60 minutes to train. en_US dc.description.tableofcontents Chapter 1. Introduction 11.1 Background 11.2 Motivation 21.3 Objective 3Chapter 2. Literature Review 52.1 Futures Market Background Review 51. Commodity Cash Market and Commodity Futures Market 52. The Standard &Poor’s 500 (S&P 500) 63. The CBOE Volatility Index (VIX) 62.2 Decision Support Mechanism 71. Hybrid AI System 72. Reasoning Neural Network (RN) 72.3 Machine Learning 101. History and Introduction 102. TensorFlow 103. GPU-Computing 152.4 Moving Window 15Chapter 3. Experiment Design 173.1 Experiment overview 173.2 The design of the Variables. 181. Data Preprocessing 193.3 The design of the System. 241. Moving window in our system 242. The trigger 253. Summarize mechanism. 254. The proposed predicting mechanism 265. The voting mechanism 293.4 Experiment Environment 30Chapter 4. Experiment result 314.1 Result overview 314.2 Result of proposed predicting system 35The training time for every window 394.3 Result without VIX variables. 40Chapter 5. Conclusion and Future work. 455.1 Conclusions 451. The performance of minute data: 452. The use of VIX variable: 455.2 Future works 45Reference 47 zh_TW dc.format.extent 2959535 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0104356036 en_US dc.subject (關鍵詞) 機器學習 zh_TW dc.subject (關鍵詞) 類神經網路 zh_TW dc.subject (關鍵詞) 圖形處理器 zh_TW dc.subject (關鍵詞) 標準普爾500指數 zh_TW dc.subject (關鍵詞) 期貨市場 zh_TW dc.subject (關鍵詞) 張量流 zh_TW dc.subject (關鍵詞) VIX指數 zh_TW dc.subject (關鍵詞) Machine learning en_US dc.subject (關鍵詞) Artificial neural network en_US dc.subject (關鍵詞) GPU en_US dc.subject (關鍵詞) S&P500 en_US dc.subject (關鍵詞) Futures market en_US dc.subject (關鍵詞) TensorFlow en_US dc.subject (關鍵詞) VIX index en_US dc.title (題名) 應用機器學習於標準普爾指數期貨 zh_TW dc.title (題名) An application of machine learning to Standard & Poor`s 500 index future. en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) 1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. “TensorFlow: Large-scale machine learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016.2. Arner, D. W., Barberis, J., & Buckley, R. P., “The Evolution of Fintech: A New Post-Crisis Paradigm?”, 2015.3. Babcock, B., Datar, M., & Motwani, R. “Sampling from a moving window over streaming data,” Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics, January 2002, pp. 633-634.4. Bartlett, M. S., Littlewort, G., Frank, M., Lainscsek, C., Fasel, I., & Movellan, J., “Recognizing facial expression: machine learning and application to spontaneous behavior,” Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference, Vol. 2, June 2005, pp. 568-573.5. Catanzaro, B., Sundaram, N., & Keutzer, K., “Fast support vector machine training and classification on graphics processors,” Proceedings of the 25th international conference on Machine learning. ACM, July 2008, pp. 104-111.6. Chen, A. S., Leung, M. T., & Daouk, H., “Application of neural networks to an emerging financial market: forecasting and trading the Taiwan Stock Index.” Computers & Operations Research 30(6), 2003, pp. 901-923.7. Clark, J, “Google Turning Its Lucrative Web Search Over to AI Machines,” Bloomberg Technology, August 2015 (available online at https://www.bloomberg.com/news/articles/2015-10-26/google-turning-its-lucrative-web-search-over-to-ai-machines).8. Cohen, W. W., Machine Learning Proceedings 1994: Proceedings of the Eighth, International Conference. Morgan Kaufmann., 2017.9. Google Brain, “TensorFlow,” Google Brain, 2017, available online at https://www.TensorFlow.org/.10. Hull, J. C., Options, futures, and other derivatives. Pearson Education India, 2006.11. Heakal R., “Futures Fundamentals: Characteristics”, Investopedia (available online at http://www.investopedia.com/university/futures/futures4.asp).12. Hornik, K., Stinchcombe, M., & White, H., “Multilayer feedforward networks are universal approximators,” Neural networks, 2(5), 1989, pp359-366.13. Kashani, M. N., Aminian, J., Shahhosseini, S., & Farrokhi, M., “Dynamic crude oil fouling prediction in industrial preheaters using optimized ANN based moving window technique,” Chemical Engineering Research and Design, 90(7), 2012, pp. 938-949.14. Metz C., “TensorFlow, Google’s Open Source AI, Signals Big Changes in Hardware Too,” Wired.com, November 2015 (available online at https://www.wired.com/2015/11/googles-open-source-ai-TensorFlow-signals-fast-changing-hardware-world/).15. Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., & Phillips, J. C. “GPU computing,” Proceedings of the IEEE, 96(5), 2008, pp. 879-899.16. Rampasek, L., & Goldenberg, A., “TensorFlow: Biology’s gateway to deep learning?,” Cell systems, 2(1), 2016, pp. 12-14.17. Scherer, K. R., “Studying the emotion-antecedent appraisal process: An expert system approach,” Cognition & Emotion, 7(3-4), 1993, pp. 325-355. 18. Stoll, H. R., & Whaley, R. E., “Commodity index investing and commodity futures prices,” 2015.19. Thomson Reuters, “Google`s AI beats human champion at Go,” CBC News, January 2016 (available online at http://www.cbc.ca/news/technology/alphago-ai-1.3422347).20. Tsaih, R. R., “The softening learning procedure,” Mathematical and computer modelling, 18(8), 1993, pp. 61-64.21. Tsaih, R. R., “Reasoning neural networks,”. Mathematics of Neural Networks, 1997, pp. 366-371.22. Tsaih, R., Hsu, Y., & Lai, C. C., “Forecasting S&P 500 stock index futures with a hybrid AI system,” Decision Support Systems, 23(2), 1998, pp. 161-174.23. Whaley, R. E., “Understanding the VIX,” The Journal of Portfolio Management, 35(3), 2009, pp. 98-105.24. Yadan, O., Adams, K., Taigman, Y., & Ranzato, M. A., “Multi-gpu training of convnets,” arXiv preprint arXiv:1312.5853, 2013.25. ZhaoZhi-Ming, Overview of Futures,Winson Taipei, 1993. zh_TW