Publications-Periodical Articles

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 Exactly and almost compatible joint distributions for high-dimensional discrete conditional distributions
作者 宋傳欽
姜志銘
Kuo, Kun-Lin
Song, Chwan-Chin
Jiang, Thomas J.
貢獻者 應數系
關鍵詞 Almost compatible joint distribution; Compatibility; Full conditional distributions; Incompatibility; Irreducible block diagonal matrix; Rank one positive extension matrix; Structural ratio matrix
日期 2017-05
上傳時間 21-Nov-2017 17:51:20 (UTC+8)
摘要 A conditional model is a set of conditional distributions, which may be compatible or incompatible, depending on whether or not there exists a joint distribution whose conditionals match the given conditionals. In this paper, we propose a new mathematical tool called a “structural ratio matrix” (SRM) to develop a unified compatibility approach for discrete conditional models. With this approach, we can find all joint pdfs after confirming that the given model is compatible. In practice, it is most likely that the conditional models we encounter are incompatible. Therefore, it is important to investigate approximated joint distributions for them. We use the concept of SRM again to construct an almost compatible joint distribution, with consistency property, to represent the given incompatible conditional model.
關聯 Journal of Multivariate Analysis, Volume 157, Pages 115-123
資料類型 article
DOI https://doi.org/10.1016/j.jmva.2017.03.005
dc.contributor 應數系
dc.creator (作者) 宋傳欽zh_TW
dc.creator (作者) 姜志銘zh_TW
dc.creator (作者) Kuo, Kun-Linen_US
dc.creator (作者) Song, Chwan-Chinen_US
dc.creator (作者) Jiang, Thomas J.en_US
dc.date (日期) 2017-05
dc.date.accessioned 21-Nov-2017 17:51:20 (UTC+8)-
dc.date.available 21-Nov-2017 17:51:20 (UTC+8)-
dc.date.issued (上傳時間) 21-Nov-2017 17:51:20 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/114851-
dc.description.abstract (摘要) A conditional model is a set of conditional distributions, which may be compatible or incompatible, depending on whether or not there exists a joint distribution whose conditionals match the given conditionals. In this paper, we propose a new mathematical tool called a “structural ratio matrix” (SRM) to develop a unified compatibility approach for discrete conditional models. With this approach, we can find all joint pdfs after confirming that the given model is compatible. In practice, it is most likely that the conditional models we encounter are incompatible. Therefore, it is important to investigate approximated joint distributions for them. We use the concept of SRM again to construct an almost compatible joint distribution, with consistency property, to represent the given incompatible conditional model.en_US
dc.format.extent 431493 bytes-
dc.format.mimetype application/pdf-
dc.relation (關聯) Journal of Multivariate Analysis, Volume 157, Pages 115-123en_US
dc.subject (關鍵詞) Almost compatible joint distribution; Compatibility; Full conditional distributions; Incompatibility; Irreducible block diagonal matrix; Rank one positive extension matrix; Structural ratio matrixen_US
dc.title (題名) Exactly and almost compatible joint distributions for high-dimensional discrete conditional distributionsen_US
dc.type (資料類型) article
dc.identifier.doi (DOI) 10.1016/j.jmva.2017.03.005
dc.doi.uri (DOI) https://doi.org/10.1016/j.jmva.2017.03.005