Publications-Conference Papers

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 Fast Modular Squaring Method for Public-Key Cryptosystems
作者 Wu, Chia-Long
Lou, Der-Chyuan
Chang, Te-Jen
關鍵詞 模平方運算 ; 公開金鑰密碼系統 ; 演算法 ; 查表法 ; 移位
Modular squaring ; public key cryptosystem ; algorithm ; Look Up Table ; shift
日期 2006
上傳時間 18-Dec-2017 17:36:01 (UTC+8)
摘要 平方演算法在大整數的運算,扮演很重要的角色。標準的平方演算法眾所週知,但有“錯誤進位”的疑慮發生。Guajardo與Paar學者提出的平方演算法修正了這項缺點,但是又延生出“錯誤索引”的問題。在本篇論文中,我們提出一個有效的平方方法,不僅可以解決以上所述兩項問題,亦可改進Yang、Hseih與Laih三位學者所提出的演算法。對於基底b而言,xi * xj 的乘積可以事先計算並儲存之,即1*2, 1*3, …, (b-1)(b-1)可以在實際運算前,事先儲存之,進而加速平方演算法的執行效率。本文所提出的演算法與Yang、Hseih與Laih三位學者所提出的演算法相較之下,快了1.77倍,當然這個演算法比標準的平方法亦快的多。
The squaring algorithm acts an important role in large integer arithmetic. The standard squaring algorithm is quite well-known, but there is an improper carry handling bug in it. The Guajardo-Paar’s squaring algorithm fixes the carry handling bug, but generates error-indexing bug. In this paper, we propose a novel efficient squaring algorithm that not only avoids the bugs between the standard squaring algorithm and the Guajardo-Paar`s squaring algorithm but also improves the performance in squaring computation for Yang-Hseih-Laih squaring algorithm. For base b, the products of xi * xj can be pre-computed on-line, that is, 1*2, 1*3, …, (b-1)(b-1) are pre-computed. Some results will be determined and stored in a look-up table before the computation and we can speed up the performance of squaring algorithm. Our proposed algorithm is about 1.77 times faster in comparison with the Yang-Hseih-Laih’s algorithm, and also faster than the standard squaring algorithm.
關聯 TANET 2006 台灣網際網路研討會論文集
資通安全、不當資訊防治
資料類型 conference
dc.creator (作者) Wu, Chia-Longen_US
dc.creator (作者) Lou, Der-Chyuanen_US
dc.creator (作者) Chang, Te-Jenen_US
dc.date (日期) 2006
dc.date.accessioned 18-Dec-2017 17:36:01 (UTC+8)-
dc.date.available 18-Dec-2017 17:36:01 (UTC+8)-
dc.date.issued (上傳時間) 18-Dec-2017 17:36:01 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/115192-
dc.description.abstract (摘要) 平方演算法在大整數的運算,扮演很重要的角色。標準的平方演算法眾所週知,但有“錯誤進位”的疑慮發生。Guajardo與Paar學者提出的平方演算法修正了這項缺點,但是又延生出“錯誤索引”的問題。在本篇論文中,我們提出一個有效的平方方法,不僅可以解決以上所述兩項問題,亦可改進Yang、Hseih與Laih三位學者所提出的演算法。對於基底b而言,xi * xj 的乘積可以事先計算並儲存之,即1*2, 1*3, …, (b-1)(b-1)可以在實際運算前,事先儲存之,進而加速平方演算法的執行效率。本文所提出的演算法與Yang、Hseih與Laih三位學者所提出的演算法相較之下,快了1.77倍,當然這個演算法比標準的平方法亦快的多。
dc.description.abstract (摘要) The squaring algorithm acts an important role in large integer arithmetic. The standard squaring algorithm is quite well-known, but there is an improper carry handling bug in it. The Guajardo-Paar’s squaring algorithm fixes the carry handling bug, but generates error-indexing bug. In this paper, we propose a novel efficient squaring algorithm that not only avoids the bugs between the standard squaring algorithm and the Guajardo-Paar`s squaring algorithm but also improves the performance in squaring computation for Yang-Hseih-Laih squaring algorithm. For base b, the products of xi * xj can be pre-computed on-line, that is, 1*2, 1*3, …, (b-1)(b-1) are pre-computed. Some results will be determined and stored in a look-up table before the computation and we can speed up the performance of squaring algorithm. Our proposed algorithm is about 1.77 times faster in comparison with the Yang-Hseih-Laih’s algorithm, and also faster than the standard squaring algorithm.
dc.format.extent 208944 bytes-
dc.format.mimetype application/pdf-
dc.relation (關聯) TANET 2006 台灣網際網路研討會論文集zh_TW
dc.relation (關聯) 資通安全、不當資訊防治zh_TW
dc.subject (關鍵詞) 模平方運算 ; 公開金鑰密碼系統 ; 演算法 ; 查表法 ; 移位zh_TW
dc.subject (關鍵詞) Modular squaring ; public key cryptosystem ; algorithm ; Look Up Table ; shiften_US
dc.title (題名) Fast Modular Squaring Method for Public-Key Cryptosystemsen_US
dc.type (資料類型) conference