dc.contributor | 心理學系 | zh_Tw |
dc.creator (作者) | 楊立行 | zh_TW |
dc.date (日期) | 2016 | en_US |
dc.date.accessioned | 22-Dec-2017 17:15:18 (UTC+8) | - |
dc.date.available | 22-Dec-2017 17:15:18 (UTC+8) | - |
dc.date.issued (上傳時間) | 22-Dec-2017 17:15:18 (UTC+8) | - |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/115313 | - |
dc.description.abstract (摘要) | 對時間序列事件的預測,可以被視為函式學習的特例。Yang和Lee(2015)的研究顯示,預測函式的學習與一般函式的學習不儘然相同。他們的研究發現,縱使預測函式是非線性的函式,只要時間序列中前後刺激值之間的相關值夠高,就可以學得會。因此,是否為線性函式並不一定是學習預測函式的關鍵。然而,這樣的論點可能有些過於偏狹。因此,本研究打算檢驗上述論點。為此,本研究使用兩種預測函式。其一是由兩個正弦函式疊加而成;另一個則是由三個正弦函式疊加而成。前者中,前後兩個刺激值之間的相關值約.97。時間序列函式也可以被視為某種運動方程式,每一個函式值均可被視為空間中運動過程的每個位置。若將兩兩位置相減,則可以得出位移量。以上述兩個正弦函式的總和函式來看,每兩次的位移彼此相關為很強的負相關。然而,三個正弦函式的總和函式的兩兩刺激值的相關和前述函式一樣強;但,位移量的相關卻沒有前者一樣的強。若Yang和Lee(2015)的論點屬實,則上述兩種預測函式應該可以被學得一樣好;反之,若三個正弦函式的總和函式學得較差,則表示,除了位置之間的相關值,位移量的相關也會影響對預測函式的學習。研究結果顯示,不論在正確率、誤差值或者實驗參與者的預測數值與真正答案之間的相關,兩個正弦函式總和的預測函式確實比三個正弦函式總和的預測函式容易學習。因此,本研究支持Yang和Lee(2015)的論點需要再增加考量位移量的預測。 | zh_TW |
dc.description.abstract (摘要) | Forecasting is referred to predicting the status of a variable in a time series. Also, forecasting can be viewed as a special case of function learning, as the former can be described as yt = f(yt?1) and the latter y = f(x). However, Yang and Lee (2015) have shown the difference between forecasting and function learning. In function learning, normally the nonlinear function is harder to learn than the linear one. In forecasting, the association between successive statuses of the variable seems to be more important. As long as the association is strong, the nonlinear function can be learned easily. In this study, this issue is pursued with more complex forecasting functions. Two conditions were conducted. In one condition, the forecasting function is actually the sum of two sine functions; whereas in the other, the forecast- ing function is the sum of three sine functions. Consequently, the stimulus value in the 2-sine conditions is periodically changing from low to high and low through learning trials with the moving direction on every trial being opposite to the next. However, although the pattern in the 3-sine conditions is still periodic through learning trials, the correlation on moving direction between trials is not that strong. The results show that people learn better the 2-sine function than the 3-sine one, supporting our hypothesis. | en_US |
dc.relation (關聯) | 執行起迄:2016/08/01~2017/07/31 | zh_TW |
dc.relation (關聯) | 105-2410-H-004-078 | zh_TW |
dc.subject (關鍵詞) | 預測;函式學習;時間序列 | zh_TW |
dc.subject (關鍵詞) | Forecasting; Function Learning; Time Series | en_US |
dc.title (題名) | 預測的心理基礎:實徵研究與理論模型 | _TW |
dc.type (資料類型) | report | - |