Publications-Theses
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 應用羅吉斯迴歸分析在個性化旅遊景點推薦模型之研究
A Study on the Personalized Recommendation Model of Tourist Attractions Using Logistic Regression Analysis作者 王品方 貢獻者 鄭宇庭<br>郭訓志
王品方關鍵詞 羅吉斯迴歸分析
個性化推薦
旅遊產業
Logistic regression analysis
Personalized recommendation
Tourism industry日期 2018 上傳時間 1-Jun-2018 17:34:21 (UTC+8) 摘要 我們正生活在一個大數據的時代,甚至也有人說得資料者得天下。在這個互聯網快速發展,讓大數據的各種應用受到了業界的高度關注與技術的快速升級,使得傳統的觀光產業隨著時代紛紛轉型,希望透過消費者的消費行為、個人資訊、成交紀錄等海量訊息透過數據分析找到市場需求與提供精準行銷,最後提高了顧客服務滿意度,並帶來龐大商機。而這一切的源頭都是為了更懂消費者的心,有別於傳統旅遊資料庫僅限於對客戶人群做簡單的統計分析,現在反而更側重於遊客的心理研究與旅遊後的產品體驗,一切以遊客的需求為關注點,並且通過對累積的大數據進行洽當地管理、建模與分享,從分析結果中觀察到的現象並給予經驗談無法給出的決策與建議,這也是本次研究旅遊推薦模型最主要的出發點。本研究設計問卷並調查研究年輕族群對於旅行的偏好,進行了解目標客群的心理研究後,應用羅吉斯迴歸分析,將蒐集到的數據建模,找到每一種旅行方式較容易吸引到哪一些族群,並且對該族群做出該旅遊景點的推薦。最後,未來的計畫是,希望延伸本旅遊景點推薦模型的概念,給予抵達目的地的交通方式與費用的精準計算,並利用輿情分析找到年輕族群熱搜的景點,提供一整趟旅行路線的規劃,作為旅遊業者開發新型旅行產品之參考來源。
This is an era of big data; some people even regard that the person who owns the data controls the world. With the rapid development of the Internet, the applications of big data attract attention from various industries and the skills of data analysis are upgrading rapidly. Therefore, traditional tourism industry needs to be transformed to avoid being eliminated. Business attempts to discover the market demand and provide precision marketing by analyzing massive data from consumer behavior, personal information and transaction records. The final object is to improve customer service satisfaction, and bring in more business opportunities. The purpose is to understand the customers more furtherer and detailed. Instead of using simple statistical analysis of consumer information like traditional tourism database, it focuses more on the psychological states of tourists and the travel experience currently. The final objective is to meet tourists’ demand; therefore, the accumulated data of customers are managed, modeled and shared appropriately in this research. An online survey with questionnaire is designed to investigate travel preference of young group. After understanding the psychological research of target customers, the Logistic regression analysis is used to analyze the collected data and build a model. The model is able to discover the target group of each travelling style, and further provide itinerary recommendation. The future plan is to enhance the application of this concept of attraction recommendation model by combining the precise calculation of transportation and cost. Simultaneously, public opinion analysis is used to analyze the popular attractions which young adults are preferred. The ultimate objective is to provide a complete route plan for a trip as a reference for travel agency to develop new travel product.參考文獻 參考文獻一、 中文文獻1. Ethel Lee,2018,個人化(Personalization)行銷怎麼做?掌握這9個電商技巧!TransBiz跨境電子商務智庫,https://transbiz.com.tw/ecommerce_personalization/。2. Kevin Tsai,2016,五張圖表看懂台灣旅遊產業,旅遊研究所,https://travel20.blogspot.tw/2016/05/blog-post_27.html。3. Kevin Tsai,2017,台灣的旅行社如何啟動第二次轉型,旅遊研究所,https://travel20.blogspot.tw/2017/01/blog-post_15.html。4. Vpriss,含有定性信息的多元迴歸模型—虛擬變量,MBA智庫文檔, http://doc.mbalib.com/view/ffaaa75496a5117c21aaa99893b38bcd.html。5. 中華民國交通部觀光局,2018,中華民國近十年觀光統計圖表,中華民國交通部觀光局行政資訊系統。6. 充電線,2016,騰訊Q2掙了快400億,但微信還要在社交1.0時代停多久?,鈦媒體,http://www.tmtpost.com/2442223.html。7. 吳元熙,2017,新的時代台灣旅遊新創抓對了這些趨勢,數位時代雜誌,https://www.bnext.com.tw/article/43472/what-did-taiwanese-travel-startups-do-that-they-can-raise-lots-of-funds。8. 李哲,2016,關於年輕人現如今的旅遊方式,我們有56 個發現,比如“被動旅遊”,好奇心日報,https://www.douban.com/note/583228516/。9. 肖政,2016,基於空間數據挖掘的個性化旅遊景點推薦系統研究,華中師範大學計算機應用技術專業碩士論文。10. 胡喬楠,2015,基於旅遊文記的旅遊景點推薦及行程路線規劃系統,浙江大學計算機應用技術專業碩士論文。11. 國立政治大學男女比106學年統計,University TW,https://university-tw.ldkrsi.men/FemaleRatio/0001#gsc.tab=0。12. 悠識數位,2013,讓你免費聽音樂,如何佔據消費者的心?淘寶用戶體驗專家分享經營秘訣,數位時代雜誌,https://www.bnext.com.tw/article/30120/BN-ARTICLE-30120。13. 淵浩,2016,讓你免費聽音樂,Spotify 打敗 Apple Music 的 4 大秘訣!,創新拿鐵,http://news.startuplatte.com/2016/11/15/4_secret_why_spotify_beat_apple_music/。14. 許峰、李帥帥、齊雪芹,2016,大數據背景下旅遊系統模型的重構,旅遊科學,第30卷,第1期。15. 陳君毅,2017,五張圖表看懂台灣旅遊產業:旅遊網站發展、消費者需求、如何創新一次搞懂,科技報橘,https://buzzorange.com/techorange/2017/08/22/about-taiwan-travel/。16. 馮國雙、陳景武、周春蓮,2004,logistic迴歸應用中容易忽視的幾個問題,中華流行病學雜誌,第25卷,第6期。17. 詹勳全、張嘉琪、洪雨柔,2012,利用羅吉斯迴歸建立阿里山森林鐵路山崩潛感預測模式,中國農學通報,第30卷,第34期,p.294-302。18. 廖麗娜,2010,第七章羅吉斯迴歸,中國醫藥大學生物統計中心,http://biostatdept.cmu.edu.tw/doc/epaper_a/paper/teaching_corner_050-1.pdf。19. 謝邦昌、鄭宇庭、蘇志雄,2017,Data Mining概述:以Clementine 12.0為例,p.393-396。20. 羅紅、陳曉、何忠偉,2014,低碳視角下鄉村旅遊決策行為實證研究—基於北京市300位遊客的調查資料,中國農學通報,第30卷,第34期,p.294-302。二、 英文文獻 1. Ahn, J. H., S. P. Han & Y. S. Lee, 2006, “Customer churn analysis: Churn determinants and mediation effects of partial defection in the Korean mobile telecommunications service industry”, Telecommunications Policy, Volume 30, Issues 10–11, pp552-568.2. Boakye, K., A. Khattak, J. Liu & S. Nambisan, 2017, “How Do Smartphone and Non-Smartphone Users Access and Use Travel Information? Evidence from the 2014 Puget Sound Regional Household Travel Survey”, Transportation Research Board 96th Annual Meeting.3. Chandrashekar, A., F. Amat, J. Basilico & T. Jebara, 2017, “Artwork Personalization at Netflix”, Netflix Technology Blog.4. Circella, G., R. Berliner, Y. Lee, F. Alemi, K. Tiedeman, L. Fulton & P. L. Mokhtarian, 2017, “The Multimodal Behavior of Millennials: Exploring Differences in Travel Choices between Young Adults and Gen Xers in California”, Transportation Research Board 96th Annual Meeting. 5. Crompton, J. L., 1979, “Motivations for pleasure vacation”, Annals of Tourism Research, Volume ,6, Issue 4, pp 408-24.https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76.6. Kitasako, Y., Y. Sasaki, T. Takagaki, A. Sadr & J. Tagami, 2017, “Multifactorial logistic regression analysis of factors associated with the incidence of erosive tooth wear among adults at different ages in Tokyo”, Clinical Oral Investigations, Volume 21, Issue 8, pp 2637–2644.7. Memon, I., L. Chen, A. Majid, M. Q. Lv, I. Hussain & G. Chen, 2015, “Travel Recommendation Using Geo-tagged Photos in Social Media for Tourist”, Wireless Personal Communications, Volume 80, Issue 4, pp 1347–1362.8. Ranteallo, I. C. , 2016, “Food Representation and Media: Experiencing Culinary Tourism Through Foodgasm and Foodporn”, Balancing Development and Sustainability in Tourism Destinations, pp 117-127. 9. Wen,Y. T., J. Y. Yeo, W. C. Peng & S. W. Hwang, 2017, “Efficient Keyword-Aware Representative Travel Route Recommendation”, IEEE Transactions on Knowledge & Data Engineering, vol. 29, Issue No. 08 - Aug, p.1639–1652. 描述 碩士
國立政治大學
統計學系
105354025資料來源 http://thesis.lib.nccu.edu.tw/record/#G0105354025 資料類型 thesis dc.contributor.advisor 鄭宇庭<br>郭訓志 zh_TW dc.contributor.author (Authors) 王品方 zh_TW dc.creator (作者) 王品方 zh_TW dc.date (日期) 2018 en_US dc.date.accessioned 1-Jun-2018 17:34:21 (UTC+8) - dc.date.available 1-Jun-2018 17:34:21 (UTC+8) - dc.date.issued (上傳時間) 1-Jun-2018 17:34:21 (UTC+8) - dc.identifier (Other Identifiers) G0105354025 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/117442 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 統計學系 zh_TW dc.description (描述) 105354025 zh_TW dc.description.abstract (摘要) 我們正生活在一個大數據的時代,甚至也有人說得資料者得天下。在這個互聯網快速發展,讓大數據的各種應用受到了業界的高度關注與技術的快速升級,使得傳統的觀光產業隨著時代紛紛轉型,希望透過消費者的消費行為、個人資訊、成交紀錄等海量訊息透過數據分析找到市場需求與提供精準行銷,最後提高了顧客服務滿意度,並帶來龐大商機。而這一切的源頭都是為了更懂消費者的心,有別於傳統旅遊資料庫僅限於對客戶人群做簡單的統計分析,現在反而更側重於遊客的心理研究與旅遊後的產品體驗,一切以遊客的需求為關注點,並且通過對累積的大數據進行洽當地管理、建模與分享,從分析結果中觀察到的現象並給予經驗談無法給出的決策與建議,這也是本次研究旅遊推薦模型最主要的出發點。本研究設計問卷並調查研究年輕族群對於旅行的偏好,進行了解目標客群的心理研究後,應用羅吉斯迴歸分析,將蒐集到的數據建模,找到每一種旅行方式較容易吸引到哪一些族群,並且對該族群做出該旅遊景點的推薦。最後,未來的計畫是,希望延伸本旅遊景點推薦模型的概念,給予抵達目的地的交通方式與費用的精準計算,並利用輿情分析找到年輕族群熱搜的景點,提供一整趟旅行路線的規劃,作為旅遊業者開發新型旅行產品之參考來源。 zh_TW dc.description.abstract (摘要) This is an era of big data; some people even regard that the person who owns the data controls the world. With the rapid development of the Internet, the applications of big data attract attention from various industries and the skills of data analysis are upgrading rapidly. Therefore, traditional tourism industry needs to be transformed to avoid being eliminated. Business attempts to discover the market demand and provide precision marketing by analyzing massive data from consumer behavior, personal information and transaction records. The final object is to improve customer service satisfaction, and bring in more business opportunities. The purpose is to understand the customers more furtherer and detailed. Instead of using simple statistical analysis of consumer information like traditional tourism database, it focuses more on the psychological states of tourists and the travel experience currently. The final objective is to meet tourists’ demand; therefore, the accumulated data of customers are managed, modeled and shared appropriately in this research. An online survey with questionnaire is designed to investigate travel preference of young group. After understanding the psychological research of target customers, the Logistic regression analysis is used to analyze the collected data and build a model. The model is able to discover the target group of each travelling style, and further provide itinerary recommendation. The future plan is to enhance the application of this concept of attraction recommendation model by combining the precise calculation of transportation and cost. Simultaneously, public opinion analysis is used to analyze the popular attractions which young adults are preferred. The ultimate objective is to provide a complete route plan for a trip as a reference for travel agency to develop new travel product. en_US dc.description.tableofcontents 目 錄 VI表目錄 VII圖目錄 8第壹章 緒論 9第一節 研究背景與動機 9第二節 研究目的 11第三節 研究流程 11第貳章 文獻探討 13第一節 旅遊產業趨勢概況 13第二節 個性化旅遊景點推薦的相關研究 18第三節 羅吉斯迴歸分析之相關研究 23第參章 研究方法 26第一節 資料來源 26第二節 研究架構 26第三節 問卷設計 27第四節 羅吉斯迴歸分析 32第肆章 研究分析 36第一節 探索性分析 36第二節 建立旅遊景點推薦模型 44第伍章 結論與未來規劃 61第一節 結論 61第二節 未來規劃 63參考文獻 64 zh_TW dc.format.extent 1460170 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0105354025 en_US dc.subject (關鍵詞) 羅吉斯迴歸分析 zh_TW dc.subject (關鍵詞) 個性化推薦 zh_TW dc.subject (關鍵詞) 旅遊產業 zh_TW dc.subject (關鍵詞) Logistic regression analysis en_US dc.subject (關鍵詞) Personalized recommendation en_US dc.subject (關鍵詞) Tourism industry en_US dc.title (題名) 應用羅吉斯迴歸分析在個性化旅遊景點推薦模型之研究 zh_TW dc.title (題名) A Study on the Personalized Recommendation Model of Tourist Attractions Using Logistic Regression Analysis en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) 參考文獻一、 中文文獻1. Ethel Lee,2018,個人化(Personalization)行銷怎麼做?掌握這9個電商技巧!TransBiz跨境電子商務智庫,https://transbiz.com.tw/ecommerce_personalization/。2. Kevin Tsai,2016,五張圖表看懂台灣旅遊產業,旅遊研究所,https://travel20.blogspot.tw/2016/05/blog-post_27.html。3. Kevin Tsai,2017,台灣的旅行社如何啟動第二次轉型,旅遊研究所,https://travel20.blogspot.tw/2017/01/blog-post_15.html。4. Vpriss,含有定性信息的多元迴歸模型—虛擬變量,MBA智庫文檔, http://doc.mbalib.com/view/ffaaa75496a5117c21aaa99893b38bcd.html。5. 中華民國交通部觀光局,2018,中華民國近十年觀光統計圖表,中華民國交通部觀光局行政資訊系統。6. 充電線,2016,騰訊Q2掙了快400億,但微信還要在社交1.0時代停多久?,鈦媒體,http://www.tmtpost.com/2442223.html。7. 吳元熙,2017,新的時代台灣旅遊新創抓對了這些趨勢,數位時代雜誌,https://www.bnext.com.tw/article/43472/what-did-taiwanese-travel-startups-do-that-they-can-raise-lots-of-funds。8. 李哲,2016,關於年輕人現如今的旅遊方式,我們有56 個發現,比如“被動旅遊”,好奇心日報,https://www.douban.com/note/583228516/。9. 肖政,2016,基於空間數據挖掘的個性化旅遊景點推薦系統研究,華中師範大學計算機應用技術專業碩士論文。10. 胡喬楠,2015,基於旅遊文記的旅遊景點推薦及行程路線規劃系統,浙江大學計算機應用技術專業碩士論文。11. 國立政治大學男女比106學年統計,University TW,https://university-tw.ldkrsi.men/FemaleRatio/0001#gsc.tab=0。12. 悠識數位,2013,讓你免費聽音樂,如何佔據消費者的心?淘寶用戶體驗專家分享經營秘訣,數位時代雜誌,https://www.bnext.com.tw/article/30120/BN-ARTICLE-30120。13. 淵浩,2016,讓你免費聽音樂,Spotify 打敗 Apple Music 的 4 大秘訣!,創新拿鐵,http://news.startuplatte.com/2016/11/15/4_secret_why_spotify_beat_apple_music/。14. 許峰、李帥帥、齊雪芹,2016,大數據背景下旅遊系統模型的重構,旅遊科學,第30卷,第1期。15. 陳君毅,2017,五張圖表看懂台灣旅遊產業:旅遊網站發展、消費者需求、如何創新一次搞懂,科技報橘,https://buzzorange.com/techorange/2017/08/22/about-taiwan-travel/。16. 馮國雙、陳景武、周春蓮,2004,logistic迴歸應用中容易忽視的幾個問題,中華流行病學雜誌,第25卷,第6期。17. 詹勳全、張嘉琪、洪雨柔,2012,利用羅吉斯迴歸建立阿里山森林鐵路山崩潛感預測模式,中國農學通報,第30卷,第34期,p.294-302。18. 廖麗娜,2010,第七章羅吉斯迴歸,中國醫藥大學生物統計中心,http://biostatdept.cmu.edu.tw/doc/epaper_a/paper/teaching_corner_050-1.pdf。19. 謝邦昌、鄭宇庭、蘇志雄,2017,Data Mining概述:以Clementine 12.0為例,p.393-396。20. 羅紅、陳曉、何忠偉,2014,低碳視角下鄉村旅遊決策行為實證研究—基於北京市300位遊客的調查資料,中國農學通報,第30卷,第34期,p.294-302。二、 英文文獻 1. Ahn, J. H., S. P. Han & Y. S. Lee, 2006, “Customer churn analysis: Churn determinants and mediation effects of partial defection in the Korean mobile telecommunications service industry”, Telecommunications Policy, Volume 30, Issues 10–11, pp552-568.2. Boakye, K., A. Khattak, J. Liu & S. Nambisan, 2017, “How Do Smartphone and Non-Smartphone Users Access and Use Travel Information? Evidence from the 2014 Puget Sound Regional Household Travel Survey”, Transportation Research Board 96th Annual Meeting.3. Chandrashekar, A., F. Amat, J. Basilico & T. Jebara, 2017, “Artwork Personalization at Netflix”, Netflix Technology Blog.4. Circella, G., R. Berliner, Y. Lee, F. Alemi, K. Tiedeman, L. Fulton & P. L. Mokhtarian, 2017, “The Multimodal Behavior of Millennials: Exploring Differences in Travel Choices between Young Adults and Gen Xers in California”, Transportation Research Board 96th Annual Meeting. 5. Crompton, J. L., 1979, “Motivations for pleasure vacation”, Annals of Tourism Research, Volume ,6, Issue 4, pp 408-24.https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76.6. Kitasako, Y., Y. Sasaki, T. Takagaki, A. Sadr & J. Tagami, 2017, “Multifactorial logistic regression analysis of factors associated with the incidence of erosive tooth wear among adults at different ages in Tokyo”, Clinical Oral Investigations, Volume 21, Issue 8, pp 2637–2644.7. Memon, I., L. Chen, A. Majid, M. Q. Lv, I. Hussain & G. Chen, 2015, “Travel Recommendation Using Geo-tagged Photos in Social Media for Tourist”, Wireless Personal Communications, Volume 80, Issue 4, pp 1347–1362.8. Ranteallo, I. C. , 2016, “Food Representation and Media: Experiencing Culinary Tourism Through Foodgasm and Foodporn”, Balancing Development and Sustainability in Tourism Destinations, pp 117-127. 9. Wen,Y. T., J. Y. Yeo, W. C. Peng & S. W. Hwang, 2017, “Efficient Keyword-Aware Representative Travel Route Recommendation”, IEEE Transactions on Knowledge & Data Engineering, vol. 29, Issue No. 08 - Aug, p.1639–1652. zh_TW