學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

題名 基于神經網路模型的台指選擇權定價實證分析
The Study of TXO Option Pricing Based on The Neural Network
作者 唐寧
Tang, Ning
貢獻者 廖四郎
Liao, Szu-Lang
唐寧
Tang,Ning
關鍵詞 選擇權定價
深度學習
神經網路模型
Option pricing
Deep learning
Neural network model
日期 2018
上傳時間 10-Jul-2018 15:34:36 (UTC+8)
摘要 在金融衍生性商品中,選擇權一直是一種重要的基礎性產品,因此選擇權定價一直學者研究的重點。近40年來選擇權發展中最重要的成果就是Black- Scholes 選擇權定價模型。然而由于該模型理想化的假設,導致它在真實定價過程中容易出現明顯的誤差。但是神經網路模型有著利用資料開始自我學習的特性,可以不用假設條件,單純由資料確定模型的結構和參數。
     本文選取2008年到2018年的臺灣加權指數選擇權(TXO)日資料作爲研究對象,利用Python構建NN神經網路模型,將買權資料分爲買權完整資料、買權價內資料、買權價平資料、買權價外資料、買權上漲趨勢資料、買權下跌趨勢資料共6類資料。再加上賣權的6類資料,一共12大類資料。分別進行訓練模型。最後採用MSE、MAE兩種誤差指標來評價不同模型的預測精度。
     最後發現NN神經網路模型的定價精度大多優于BS模型的期權定價效果。同時NN模型的價外選擇權資料的定價效果更精確,幷且按漲跌趨勢劃分後的選擇權資料定價效果也比完整資料的定價效果要好。
Option is a significant basic product in financial derivatives. How to price an option is a major issue to many scholars. During the last 40 years, Black-Scholes option pricing model has been considered as the crucial research achievement. However, obvious bias occurs in the real market pricing procedure due to the idealized assumption of this model. The neural network model has the characteristic of using data to start self-learning, so the structure and parameters of the model can be determined by data without assuming conditions.
     This thesis took TXO(2008-2018) as a research object, and used the Python to structure Neural Network(NN) model. Then the data of call option have been divided into 6 types , including‘all data’ ,‘in-the-price data’, ‘at-the-price data’, ‘out-the-price data’, ‘up-trend data’ and‘down-trend data’. The same classification is applied to the put option data. A total of 12 types of data have been trained by NN model separately. Finally, MSE and MAE are used to evaluate the accuracy of the forecasts of different models.
     In conclusion, the pricing accuracy of the neural network model is substantially better than that of the Black-Scholes model. Meanwhile , the pricing effect of out-the-price option data is more accurate, and the pricing of up-trend option data has a good effect either.
參考文獻 [1] 李沃墻.(2000).台股重設型權證的評價績效比較陰.真理財金學
     報,91-112
     [2] 周大鵬. (2008). 基於B-P神經網路的期權定價研究.
     (Doctoral dissertation,中國人民大學).
     [3] 馬發強. (2012). 基於RBF神經網路的期權定價研究.
     (Doctoral dissertation, 中南大學).
     [4] 張鴻彥, & 林輝. (2007). 基于小波神經網絡的期權定價模型.
     東南大學學報 (自然科學版), 37(4), 716-720.
     [5] 董瑩, 烏日嘎, & 齊淑華. (2013). 基於bp神經網路的期權定
     價模型. 魯東大學學報(自然科學版), 29(3), 196-199.
     [6] 劉志强. (2005). 基于神經網路的期權定價模型. (Doctoral
     dissertation, 重慶大學).
     [7] 劉旭彬. (2011). 基於神經網路方法的期權定價應用研究.
     (Doctoral dissertation, 暨南大學).
     [8] 譚朵朵. (2008). 基於bp神經網路的s&p500指數期權定價. 統
     計與資訊理論壇, 23(11), 40-43.
     [9] Amilon, H. (2003). A neural network versus
     black– scholes: a comparisonof pricing and hedging
     performances.Journal of Forecasting, 22(4), 317-335.
     [10] Gençay, R., & Qi, M. (2001). Pricing and hedging
     derivative securities with neural networks: bayesian
     regularization, early stopping, and bagging. IEEE
     Trans Neural Netw, 12(4), 726-734.
     [11] Hinton, G. E. (2012). A practical guide to training
     restricted Boltzmann machines. In Neural networks:
     Tricks of the trade(pp. 599-619). Springer, Berlin,
     Heidelberg.
     [12] Huang, S. C., & Wu, T. K. (2006, September). A hybrid
     unscented Kalman filter and support vector machine
     model in option price forecasting. In International
     Conference on Natural Computation (pp. 303-312).
     Springer, Berlin, Heidelberg.
     [13] Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A
     fast learning algorithm for deep belief nets. Neural
     computation, 18(7), 1527-1554.
     [14] Hutchinson, J. M., Lo, A. W., & Poggio, T. (1994). A
     nonparametric approach to pricing and hedging
     derivative securities via learning networks. Journal
     of Finance, 49(3), 851-889.
     [15] Liang, X., Zhang, H., Xiao, J., & Chen, Y. (2009).
     Improving option price forecasts with neural networks
     and support vector regressions. Neurocomputing,
     72(13), 3055-3065.
     [16] Panayiotis, A. C., Spiros, M. H., & Chris, C. (2004,
     July). Option pricing and trading with artificial
     neural networks and advanced parametric models with
     implied parameters. In Neural Networks, 2004.
     proceedings. 2004 IEEE International Joint Conference
     on (Vol. 4, pp. 2741-2746). IEEE.
     [17] Park, H., Kim, N., & Lee, J. (2014). Parametric models
     and non-parametric machine learning models for
     predicting option prices: empirical comparison study
     over kospi 200 index options. Expert Systems with
     Applications, 41(11), 5227-5237.
     [18] Paul R. Lajbcygier, & Jerome T. Connor. (1997).
     Improved option pricing using artificial neural
     networks and, bootstrap methods. International Journal
     of Neural Systems, 8(04), 457-471.
     [19] Rumelhart, D. E., Hinton, G. E., & Williams, R. J.
     (1986). Learning representations by back-propagating
     errors. nature, 323(6088), 533.
     [20] Srivastava, R. K., Greff, K., & Schmidhuber, J.
     (2015). Highway networks.
     arXiv preprintarXiv:1505.00387.
     [21] Wang, Y. H. (2009). Nonlinear neural network
     forecasting model for stock index option price: Hybrid
     GJR–GARCH approach. Expert Systems with Applications,
     36(1), 564-570.
     [22] Wu, S., Zhong, S., & Liu, Y. (2018). Deep residual
     learning for image steganalysis. Multimedia tools and
     applications, 77(9), 10437-10453.
描述 碩士
國立政治大學
金融學系
105352041
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0105352041
資料類型 thesis
dc.contributor.advisor 廖四郎zh_TW
dc.contributor.advisor Liao, Szu-Langen_US
dc.contributor.author (Authors) 唐寧zh_TW
dc.contributor.author (Authors) Tang,Ningen_US
dc.creator (作者) 唐寧zh_TW
dc.creator (作者) Tang, Ningen_US
dc.date (日期) 2018en_US
dc.date.accessioned 10-Jul-2018 15:34:36 (UTC+8)-
dc.date.available 10-Jul-2018 15:34:36 (UTC+8)-
dc.date.issued (上傳時間) 10-Jul-2018 15:34:36 (UTC+8)-
dc.identifier (Other Identifiers) G0105352041en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/118537-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 金融學系zh_TW
dc.description (描述) 105352041zh_TW
dc.description.abstract (摘要) 在金融衍生性商品中,選擇權一直是一種重要的基礎性產品,因此選擇權定價一直學者研究的重點。近40年來選擇權發展中最重要的成果就是Black- Scholes 選擇權定價模型。然而由于該模型理想化的假設,導致它在真實定價過程中容易出現明顯的誤差。但是神經網路模型有著利用資料開始自我學習的特性,可以不用假設條件,單純由資料確定模型的結構和參數。
     本文選取2008年到2018年的臺灣加權指數選擇權(TXO)日資料作爲研究對象,利用Python構建NN神經網路模型,將買權資料分爲買權完整資料、買權價內資料、買權價平資料、買權價外資料、買權上漲趨勢資料、買權下跌趨勢資料共6類資料。再加上賣權的6類資料,一共12大類資料。分別進行訓練模型。最後採用MSE、MAE兩種誤差指標來評價不同模型的預測精度。
     最後發現NN神經網路模型的定價精度大多優于BS模型的期權定價效果。同時NN模型的價外選擇權資料的定價效果更精確,幷且按漲跌趨勢劃分後的選擇權資料定價效果也比完整資料的定價效果要好。
zh_TW
dc.description.abstract (摘要) Option is a significant basic product in financial derivatives. How to price an option is a major issue to many scholars. During the last 40 years, Black-Scholes option pricing model has been considered as the crucial research achievement. However, obvious bias occurs in the real market pricing procedure due to the idealized assumption of this model. The neural network model has the characteristic of using data to start self-learning, so the structure and parameters of the model can be determined by data without assuming conditions.
     This thesis took TXO(2008-2018) as a research object, and used the Python to structure Neural Network(NN) model. Then the data of call option have been divided into 6 types , including‘all data’ ,‘in-the-price data’, ‘at-the-price data’, ‘out-the-price data’, ‘up-trend data’ and‘down-trend data’. The same classification is applied to the put option data. A total of 12 types of data have been trained by NN model separately. Finally, MSE and MAE are used to evaluate the accuracy of the forecasts of different models.
     In conclusion, the pricing accuracy of the neural network model is substantially better than that of the Black-Scholes model. Meanwhile , the pricing effect of out-the-price option data is more accurate, and the pricing of up-trend option data has a good effect either.
en_US
dc.description.tableofcontents 第一章、緒論 1
     第一節、研究背景 1
     第二節、研究方法與目的 2
     第三節、論文架構 3
     第二章、文獻回顧 4
     第一節、選擇權定價的理論發展 4
     第二節、神經網路模型的相關方法 7
     第三節、神經網路模型在選擇權定價中的應用 11
     第三章、神經網路模型的設計 13
     第一節、樣本資料的選擇 13
     第二節、Black-Scholes模型設計 14
     第三節、神經網路模型(NN)的設計 19
     第四章、實證過程 26
     第一節、買權資料訓練過程 26
     第二節、賣權資料訓練過程 34
     第三節、上漲趨勢資料和下跌趨勢資料分別的訓練過程 41
     第四節、Black-Scholes公式的測試過程 47
     第五章、實證結果與分析 50
     第一節、實證結果 50
     第二節、結果分析 52
     第三節、研究展望 53
     參考文獻 55
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0105352041en_US
dc.subject (關鍵詞) 選擇權定價zh_TW
dc.subject (關鍵詞) 深度學習zh_TW
dc.subject (關鍵詞) 神經網路模型zh_TW
dc.subject (關鍵詞) Option pricingen_US
dc.subject (關鍵詞) Deep learningen_US
dc.subject (關鍵詞) Neural network modelen_US
dc.title (題名) 基于神經網路模型的台指選擇權定價實證分析zh_TW
dc.title (題名) The Study of TXO Option Pricing Based on The Neural Networken_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] 李沃墻.(2000).台股重設型權證的評價績效比較陰.真理財金學
     報,91-112
     [2] 周大鵬. (2008). 基於B-P神經網路的期權定價研究.
     (Doctoral dissertation,中國人民大學).
     [3] 馬發強. (2012). 基於RBF神經網路的期權定價研究.
     (Doctoral dissertation, 中南大學).
     [4] 張鴻彥, & 林輝. (2007). 基于小波神經網絡的期權定價模型.
     東南大學學報 (自然科學版), 37(4), 716-720.
     [5] 董瑩, 烏日嘎, & 齊淑華. (2013). 基於bp神經網路的期權定
     價模型. 魯東大學學報(自然科學版), 29(3), 196-199.
     [6] 劉志强. (2005). 基于神經網路的期權定價模型. (Doctoral
     dissertation, 重慶大學).
     [7] 劉旭彬. (2011). 基於神經網路方法的期權定價應用研究.
     (Doctoral dissertation, 暨南大學).
     [8] 譚朵朵. (2008). 基於bp神經網路的s&p500指數期權定價. 統
     計與資訊理論壇, 23(11), 40-43.
     [9] Amilon, H. (2003). A neural network versus
     black– scholes: a comparisonof pricing and hedging
     performances.Journal of Forecasting, 22(4), 317-335.
     [10] Gençay, R., & Qi, M. (2001). Pricing and hedging
     derivative securities with neural networks: bayesian
     regularization, early stopping, and bagging. IEEE
     Trans Neural Netw, 12(4), 726-734.
     [11] Hinton, G. E. (2012). A practical guide to training
     restricted Boltzmann machines. In Neural networks:
     Tricks of the trade(pp. 599-619). Springer, Berlin,
     Heidelberg.
     [12] Huang, S. C., & Wu, T. K. (2006, September). A hybrid
     unscented Kalman filter and support vector machine
     model in option price forecasting. In International
     Conference on Natural Computation (pp. 303-312).
     Springer, Berlin, Heidelberg.
     [13] Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A
     fast learning algorithm for deep belief nets. Neural
     computation, 18(7), 1527-1554.
     [14] Hutchinson, J. M., Lo, A. W., & Poggio, T. (1994). A
     nonparametric approach to pricing and hedging
     derivative securities via learning networks. Journal
     of Finance, 49(3), 851-889.
     [15] Liang, X., Zhang, H., Xiao, J., & Chen, Y. (2009).
     Improving option price forecasts with neural networks
     and support vector regressions. Neurocomputing,
     72(13), 3055-3065.
     [16] Panayiotis, A. C., Spiros, M. H., & Chris, C. (2004,
     July). Option pricing and trading with artificial
     neural networks and advanced parametric models with
     implied parameters. In Neural Networks, 2004.
     proceedings. 2004 IEEE International Joint Conference
     on (Vol. 4, pp. 2741-2746). IEEE.
     [17] Park, H., Kim, N., & Lee, J. (2014). Parametric models
     and non-parametric machine learning models for
     predicting option prices: empirical comparison study
     over kospi 200 index options. Expert Systems with
     Applications, 41(11), 5227-5237.
     [18] Paul R. Lajbcygier, & Jerome T. Connor. (1997).
     Improved option pricing using artificial neural
     networks and, bootstrap methods. International Journal
     of Neural Systems, 8(04), 457-471.
     [19] Rumelhart, D. E., Hinton, G. E., & Williams, R. J.
     (1986). Learning representations by back-propagating
     errors. nature, 323(6088), 533.
     [20] Srivastava, R. K., Greff, K., & Schmidhuber, J.
     (2015). Highway networks.
     arXiv preprintarXiv:1505.00387.
     [21] Wang, Y. H. (2009). Nonlinear neural network
     forecasting model for stock index option price: Hybrid
     GJR–GARCH approach. Expert Systems with Applications,
     36(1), 564-570.
     [22] Wu, S., Zhong, S., & Liu, Y. (2018). Deep residual
     learning for image steganalysis. Multimedia tools and
     applications, 77(9), 10437-10453.
zh_TW
dc.identifier.doi (DOI) 10.6814/THE.NCCU.MB.014.2018.F06-