學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

題名 從CRISPR專利爭議探討歐美專利進步性之研究
A Study on Patent Non-Obvious Subject Matter of Europe and the US from the CRISPR Patent Dispute
作者 黃于倫
Huang, Yu-Lun
貢獻者 陳桂恒
Chan, Keith
黃于倫
Huang, Yu-Lun
關鍵詞 進步性
顯而易知
發明性步驟
CRISPR
成功的合理期望
Patent Non-Obvious Subject Matter
Obvious
Inventive step
CRISPR
Reasonable expectation of success
日期 2017
上傳時間 19-Jul-2018 17:30:17 (UTC+8)
摘要 CRISPR-Cas系統是原核生物抵抗外來遺傳物質的後天免疫系統。在2012年由瑞典Umeå 大學的科學家Emmanuelle Charpentier與美國加州大學柏克萊分校 (UC) 的科學家Jennifer A. Doudna所共同發表的研究中,他們利用CRISPR-Cas9系統在試管內進行生物基因體的剪輯,並且向美國專利商標局 (USPTO) 及歐洲專利局 (EPO) 提出專利申請。2013年,The Broad Institute (BI) 的科學家張鋒將CRISPR-Cas9系統用於真核細胞多個基因的編輯,並且也在UC之後向USPTO及EPO提出CRISPR-Cas9系統用於真核細胞的專利申請。
     然而,BI於2014年4月早於UC取得美國CRISPR-Cas9系統用於真核細胞的專利。UC主張BI之CRISPR-Cas9應用於真核細胞之發明與UC之CRISPR-Cas9系統不限定用於任何環境下之發明為相同的,且BI之專利為顯而易知的;UC遂於2015年向USPTO建議雙方進入專利衝突程序 (Patent interference)。2017年 2月,由美國專利審理暨訴願委員會 (PTAB) 的行政專利法官所組成的審理小組做成之決議中,認定兩者為不同的發明,且BI之專利為非顯而易知的,雙方的請求項沒有衝突。
     另一方面,EPO於2017年5月公告UC之CRISPR-Cas9系統用於真核細胞與原核細胞專利核准。而BI於歐洲所申請的CRISPR相關專利亦有若干件獲得EPO之核准。
     本研究在分析PTAB專利衝突程序之決議及EPO在進行UC及BI之CRISPR專利審查之官方意見審查書後,發現USPTO及EPO對CRISPR-Cas9系統用於真核細胞之發明是否具有進步性之認知差異來自於對「成功的合理期望」之理解不同所致。PTAB根據Doudna發表研究當時多次接受雜誌專訪表示不確定CRISPR-Cas9系統能成功地在真核細胞中實現等證據,認定BI之發明沒有成功的合理期望;而EPO則是認為真核細胞與原核細胞的環境差異並不會使CRISPR-Cas9系統在兩個環境下不相容。
     USPTO與EPO對進步性的不同意見將使未來的CRISPR相關專利申請人感到兩難。本研究建議未來在申請CRISPR相關專利時應針對該區域之審查方向及對「成功的合理期待」之認知差異進行些微調整,以尋求最大利益。此外,發明人也應避免在取得專利權之前在任何公開場合發表與系爭發明或與系爭發明未來進一步研究之個人意見。
CRISPR-Cas system is an acquired immune system of prokaryotic cells to defense foreign genetic elements. In a study published in 2012 by Emmanuelle Charpentier, a scientist at Umeå University, and Jennifer A. Doudna, a scientist at the University of California, Berkeley (UC), they performed genome editing in vitro by using a programmable CRISPR-Cas9 system. They filed a US and European patent application for their CRISPR-Cas9 system. In 2013, Zhang Feng, a scientist of The Broad Institute (BI) applied CRISPR-Cas9 system on multiplex genome editing in eukaryotic cells successfully and also filed several US and European patent applications limited to CRISPR-Cas9 systems in a eukaryotic environment after UC.
     However, in April 2014, US Patent and Trademark Office (USPTO) approved BI’s patent application, which is earlier than UC. UC argued their invention, which is directed to CRISPR-Cas9 systems not restricted to any environment, is the same as BI’s invention and BI’s patent is obvious. In 2015, UC suggested both parties enter patent interference. In the decision made by Patent Trial and Appeal Board (PTAB) in February 2017, the board held BI’s claims are not the same invention as UC’s claims and the invention of CRISPR-Cas9 systems in eukaryotic cells would not have been obvious over the invention of CRISPR-Cas9 systems in any environment, the parties’ claims do not interfere.
     On the other hand, European Patent Office (EPO) approved UC’s patent application for using the CRISPR-Cas9 system in both prokaryotic and eukaryotic environment in May 2017. Several CRISPR-related patents applied by BI is also approved by EPO lately.
     This paper analyzes the decision made by PTAB and EPO’s office action during the examination of UC and BI’s patent application and found that the different opinion on the obviousness of the invention that CRISPR-Cas system limited in a eukaryotic environment invention between USPTO and EPO came from the different understanding of “reasonable expectation of success.” According to the comment Doudna made in magazine interviews after their study was published in 2012, that she said their team was not sure if CRISPR-Cas9 would work in eukaryotes, PTAB thus found that BI’s invention did not have a reasonable expectation of success. However, EPO believes that environmental differences between eukaryotic and prokaryotic cells do not render the CRISPR-Cas9 system incompatible under both conditions.
     The different opinion between the USPTO and EPO on the obviousness will make it difficult for the future CRISPR related patent applicants. This study suggests that when applying for CRISPR related patents in the future, minor adjustments should be made to align to the examination standard of the specific region and their different opinions in “reasonable expectations for success” in order to maximize the applicants’ benefit. In addition, the inventor should also avoid publishing their personal opinions on the inventions or further research of the invention on any public occasion before the patents are granted.
參考文獻 一、 中文文獻
     
     (一) 專書
     袁仁捷,美國專利申請實務Ⅲ,袁仁傑,2017年7月。
     楊智傑,專利法,新學林,2014年9月。
     
     (二) 論文
     李育慶,KSR 案後美國法院非顯而易知判決之實證研究,國立交通大學科技法律研究所碩士論文,2008年6月。
     郭仲偉,生技醫藥相關發明之專利要件探討-以美國與台灣為例,國立政治大學法律學系碩士班學士後法學組論文,2005年7月。
     黃柏維,從美國專利法析論非顯而易知性之相關爭議,國立政治大學智慧財產研究所碩士論文,2012年7月。
     彭翔鴻,聯邦巡迴上訴法院於 KSR 案後非顯而易知性標準之實證研究,國立交通大學管理學院碩士在職專班科技法律組碩士論文,2010年1月。
     
     (三) 期刊
     王淑靜,歐洲專利申請制度與實務簡介,智慧財產季刊,53期,頁43-50,2005年。
     王懿融,方法專利及物品專利之區別,理律法律雜誌雙月刊,90年5月號,頁3-4,2001年5月。
     宋皇志,專利法中「發明所屬技術領域中具有通常知識者」之法實證研究,政大法學評論,146期,頁53-126,2016年9月。
     施雅儀,從 In re Kubin 案探討後 KSR 時代美國生物技術專利之顯而易知性審查, 智慧財產權月刊,128 期,頁53-79,2009 年 8 月。
     劉懿嫻,美國專利法非顯而易知性之新觀點:相同條件下的客觀指標,科技法學評論,7卷2期,頁181-219,2010年12月。
     謝祖松,美國專利法上「具有通常技術者」之探討,臺北大學法學論叢,76期,頁43-94,2010年12月。
     
     二、 英文文獻
     
     (一) 專書
     ALBERT LEHNINGER, MICHAEL COX & DAVID L. NELSON, LEHNINGER PRINCIPLES OF BIOCHEMISTRY (5 ed. 2008).
     DUNCAN BUCKNELL, PHARMACEUTICAL, BIOTECHNOLOGY, AND CHEMICAL INVENTIONS: WORLD PROTECTION AND EXPLOITATION (2011).
     JAMES D. WATSON, TANIA A. BAKER, STEPHEN P. BELL, ALEXANDER GANN, MICHAEL LEVINE & RICHARD LOSICK, MOLECULAR BIOLOGY OF THE GENE (6 ed. 2008).
     JEROME ROSENSTOCK, PATENT INTERFERENCE PRACTICE HANDBOOK (1998).
     PHILIP W. GRUBB AND PETER R. THOMSEN, PATENTS FOR CHEMICALS, PHARMACEUTICALS, AND BIOTECHNOLOGY: FUNDAMENTALS OF GLOBAL LAW, PRACTICE, AND STRATEGY (5 ed. 2010).
     
     (二) 期刊
     András Kupecz, Who owns CRISPR-Cas9 in Europe?, 32(12) NATURE BIOTECHNOLOGY 1194-1196 (2014).
     Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A. and Zhang F., Multiplex Genome Engineering Using CRISPR/Cas Systems, 339 SCIENCE 816-823 (2013).
     Deltcheva E., Chylinski K., Sharma C.M., Gonzales K., Chao Y., Pirzada Z.A., Eckert M.R., Vogel J. and Charpentier E., CRISPR RNA Maturation by Trans-Encoded Small RNA and Host Factor RNase III, 471(7340) NATURE 602-607 (2011).
     Fangyu Lin and Shyh-Jen Wang, Identification of the Factors that Result in Obviousness Rulings for Biotech Patents—An Updated Analysis of the US Federal Circuit Decisions after KSR, 9(11) HUMAN VACCINES & IMMUNOTHERAPEUTICS 2490-2495 (2013).
     Gaj T., Gersbach C.A. and Barbas C.F. III, ZFN, TALEN and CRISPR/Cas-Based Methods for Genome Engineering, 37(7) TRENDS IN BIOTECHNOLOGY 397-405 (2013).
     Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A. and Charpentier E., A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity, 337 SCIENCE 816-821 (2012).
     Jonathan J. Darrow, The Neglected Dimension of Patent Law’s PHOSITA Standard, 23(1) HARVARD JOURNAL OF LAW & TECHNOLOGY 227-258 (2009).
     Karen I. Boyd, Nonobviousness and the Biotechnology Industry: A Proposal for a Doctrine of Economic Nonobviousness, 12(2) BERKELEY TECHNOLOGY LAW JOURNAL 311-343 (1997).
     Marraffini L.A. and Sontheimer E.J., CRISPR Interference: RNA-Directed Adaptive Immunity in Bacteria and Archaea, 11(3) NATURE REVIEWS GENETICS 181-190 (2010).
     Minssen T., Meanwhile on the Other Side of the Pond: Why Biopharmaceutical Inventions that Were `Obvious to Try` Still Might Be Non-Obvious – Part I, 9 CHICAGO-KENT JOURNAL OF INTELLECTUAL PROPERTY 60-131 (2010).
     Mojica F.J.M., Díez-Villaseñor C., García-Martínez J. and Almendros C., Short Motif Sequences Determine the Targets of the Prokaryotic CRISPR Defence System, 155 MICROBIOLOGY 733-740 (2009).
     Overwalle G.V., Policy Levers Tailoring Patent Law to Biotechnology: Comparing U.S. and European Approaches, 1(2) UC IRVINE LAW REVIEW 435-517 (2011).
     Shyh-Jen Wang, The Obviousness Rejection as a Barrier to Biotech Patent Prosecution, 27(12) NATURE BIOTECHNOLOGY 1125-1126 (2009).
      
     (三) 法院判決
     Bristol-Myers Squibb Co. v. Teva Pharm. USA, Inc., 769 F.3d 1339 (Fed. Cir. 2014).
     Daiichi Sankyo v. Apotex, 501 F.3d 1254 (Fed. Cir. 2007).
     Diversified Biotech, Inc. v. Phenix Research Prod., Inc. No. CIV.A. 03-10941-RCL, 2004 WL 5645757 (D. Mass. Apr. 22, 2004).
     Ferring B.V. v. Waston Labs., Inc.-Florida, 764 F.3d 1401 (Fed. Cir. 2014).
     Graham v. John Deere Co. of Kansas City, 383 U.S. 1, 86 S. Ct. 684, 15 L. Ed. 2d 545 (1966).
     Hoffmann-La Roche Inc. v. Apotex Inc., 748 F.3d 1326 (Fed. Cir. 2014).
     Hotchkiss v. Greenwood, 52 U.S. 248, 13 L. Ed. 683 (1850).
     In re Bell, 991 F.2d 781 (Fed. Cir. 1993).
     In re Deuel, 51 F.3d 1552 (Fed. Cir. 1995).
     In re Droge, 695 F.3d 1334 (Fed. Cir. 2012).
     In re Kubin, 561 F.3d 1351 (Fed. Cir. 2009).
     Kimberly-Clark Corp. v. Johnson & Johnson, 745 F.2d 1437 (Fed. Cir. 1984).
     KSR Int’l Co. v. Teleflex Inc., 550 U.S. 398, 127 S. Ct. 1727, 167 L. Ed. 2d 705 (2007).
     Par Pharmaceuticals, Inc. v. TWi Pharmaceuticals, Inc., 624 Fed. Appx. 756, (Fed. Cir. 2015).
     Standard Oil Co. v. Am. Cyanamid Co., 774 F.2d 448 (Fed. Cir. 1985).
     WMS Gaming, Inc. v. Int’l Game Tech., 184 F.3d 1339 (Fed. Cir. 1999).
     
     (四) 其他
     College of Chemistry, University of California, Berkeley, Jennifer Doudna|Editas Medicine – The CRISPR, 9.1 CATALYST MAGAZINE (2014).
     Decision of the European Patent Office, Board of Appeal, Case 60/89 (Aug. 31, 1990), O.J. E.P.O. 268 (1992) relating to European Patent No. 0 006 694 (B1) concerning a method of making a selected protein.
     Decision of the European Patent Office, Board of Appeal, Case T 296/93 (Jul. 28, 1994).
     Decision of the European Patent Office, Board of Appeal, Case T 386/94 (Jan. 11, 1996).
     Decision of the European Patent Office, Board of Appeal, Case T 455/91 (June 20, 1994) O.J. E.P.O. 684 relating to European Patent No. 0 060 057 concerning the expression of polypeptides in yeast.
     Decision of the European Patent Office, Board of Appeal, Case T 412/93 (Nov. 21, 1994).
     Decision of the European Patent Office, Board of Appeal, Case T 500/91 (Oct. 21, 1992).
     Decision of the United States Patent and Trademark Office, Patent Trial and Appeal Board, Patent Interference No. 106,048 (DK) (PTAB. 2017), The Broad Institute v. The Regents of The University of California.
     Robert Sanders, Cheap and Easy Technique to Snip DNA Could Revolutionize Gene Therapy, BERKELEY NEWS (2013).
描述 碩士
國立政治大學
科技管理與智慧財產研究所
104364206
資料來源 http://thesis.lib.nccu.edu.tw/record/#G1043642062
資料類型 thesis
dc.contributor.advisor 陳桂恒zh_TW
dc.contributor.advisor Chan, Keithen_US
dc.contributor.author (Authors) 黃于倫zh_TW
dc.contributor.author (Authors) Huang, Yu-Lunen_US
dc.creator (作者) 黃于倫zh_TW
dc.creator (作者) Huang, Yu-Lunen_US
dc.date (日期) 2017en_US
dc.date.accessioned 19-Jul-2018 17:30:17 (UTC+8)-
dc.date.available 19-Jul-2018 17:30:17 (UTC+8)-
dc.date.issued (上傳時間) 19-Jul-2018 17:30:17 (UTC+8)-
dc.identifier (Other Identifiers) G1043642062en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/118768-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 科技管理與智慧財產研究所zh_TW
dc.description (描述) 104364206zh_TW
dc.description.abstract (摘要) CRISPR-Cas系統是原核生物抵抗外來遺傳物質的後天免疫系統。在2012年由瑞典Umeå 大學的科學家Emmanuelle Charpentier與美國加州大學柏克萊分校 (UC) 的科學家Jennifer A. Doudna所共同發表的研究中,他們利用CRISPR-Cas9系統在試管內進行生物基因體的剪輯,並且向美國專利商標局 (USPTO) 及歐洲專利局 (EPO) 提出專利申請。2013年,The Broad Institute (BI) 的科學家張鋒將CRISPR-Cas9系統用於真核細胞多個基因的編輯,並且也在UC之後向USPTO及EPO提出CRISPR-Cas9系統用於真核細胞的專利申請。
     然而,BI於2014年4月早於UC取得美國CRISPR-Cas9系統用於真核細胞的專利。UC主張BI之CRISPR-Cas9應用於真核細胞之發明與UC之CRISPR-Cas9系統不限定用於任何環境下之發明為相同的,且BI之專利為顯而易知的;UC遂於2015年向USPTO建議雙方進入專利衝突程序 (Patent interference)。2017年 2月,由美國專利審理暨訴願委員會 (PTAB) 的行政專利法官所組成的審理小組做成之決議中,認定兩者為不同的發明,且BI之專利為非顯而易知的,雙方的請求項沒有衝突。
     另一方面,EPO於2017年5月公告UC之CRISPR-Cas9系統用於真核細胞與原核細胞專利核准。而BI於歐洲所申請的CRISPR相關專利亦有若干件獲得EPO之核准。
     本研究在分析PTAB專利衝突程序之決議及EPO在進行UC及BI之CRISPR專利審查之官方意見審查書後,發現USPTO及EPO對CRISPR-Cas9系統用於真核細胞之發明是否具有進步性之認知差異來自於對「成功的合理期望」之理解不同所致。PTAB根據Doudna發表研究當時多次接受雜誌專訪表示不確定CRISPR-Cas9系統能成功地在真核細胞中實現等證據,認定BI之發明沒有成功的合理期望;而EPO則是認為真核細胞與原核細胞的環境差異並不會使CRISPR-Cas9系統在兩個環境下不相容。
     USPTO與EPO對進步性的不同意見將使未來的CRISPR相關專利申請人感到兩難。本研究建議未來在申請CRISPR相關專利時應針對該區域之審查方向及對「成功的合理期待」之認知差異進行些微調整,以尋求最大利益。此外,發明人也應避免在取得專利權之前在任何公開場合發表與系爭發明或與系爭發明未來進一步研究之個人意見。
zh_TW
dc.description.abstract (摘要) CRISPR-Cas system is an acquired immune system of prokaryotic cells to defense foreign genetic elements. In a study published in 2012 by Emmanuelle Charpentier, a scientist at Umeå University, and Jennifer A. Doudna, a scientist at the University of California, Berkeley (UC), they performed genome editing in vitro by using a programmable CRISPR-Cas9 system. They filed a US and European patent application for their CRISPR-Cas9 system. In 2013, Zhang Feng, a scientist of The Broad Institute (BI) applied CRISPR-Cas9 system on multiplex genome editing in eukaryotic cells successfully and also filed several US and European patent applications limited to CRISPR-Cas9 systems in a eukaryotic environment after UC.
     However, in April 2014, US Patent and Trademark Office (USPTO) approved BI’s patent application, which is earlier than UC. UC argued their invention, which is directed to CRISPR-Cas9 systems not restricted to any environment, is the same as BI’s invention and BI’s patent is obvious. In 2015, UC suggested both parties enter patent interference. In the decision made by Patent Trial and Appeal Board (PTAB) in February 2017, the board held BI’s claims are not the same invention as UC’s claims and the invention of CRISPR-Cas9 systems in eukaryotic cells would not have been obvious over the invention of CRISPR-Cas9 systems in any environment, the parties’ claims do not interfere.
     On the other hand, European Patent Office (EPO) approved UC’s patent application for using the CRISPR-Cas9 system in both prokaryotic and eukaryotic environment in May 2017. Several CRISPR-related patents applied by BI is also approved by EPO lately.
     This paper analyzes the decision made by PTAB and EPO’s office action during the examination of UC and BI’s patent application and found that the different opinion on the obviousness of the invention that CRISPR-Cas system limited in a eukaryotic environment invention between USPTO and EPO came from the different understanding of “reasonable expectation of success.” According to the comment Doudna made in magazine interviews after their study was published in 2012, that she said their team was not sure if CRISPR-Cas9 would work in eukaryotes, PTAB thus found that BI’s invention did not have a reasonable expectation of success. However, EPO believes that environmental differences between eukaryotic and prokaryotic cells do not render the CRISPR-Cas9 system incompatible under both conditions.
     The different opinion between the USPTO and EPO on the obviousness will make it difficult for the future CRISPR related patent applicants. This study suggests that when applying for CRISPR related patents in the future, minor adjustments should be made to align to the examination standard of the specific region and their different opinions in “reasonable expectations for success” in order to maximize the applicants’ benefit. In addition, the inventor should also avoid publishing their personal opinions on the inventions or further research of the invention on any public occasion before the patents are granted.
en_US
dc.description.tableofcontents 第一章 緒論 1
     第一節 研究背景與研究動機 1
     第二節 研究目的 4
     第三節 研究方法 6
     第四節 研究限制 8
     第二章 CRISPR之介紹 9
     第一節 CRISPR之作用機制 9
     第二節 CRISPR之發現及研究過程 12
     第一項 CRISPR之發現過程 12
     第二項 CRISPR-Cas9基因體編輯系統之研究 13
     第三項 CRISPR目前之研究現況 16
     第三節 CRISPR之應用領域 18
     第一項 基因體編輯技術 18
     第二項 CRISPR可能之應用市場 20
     第三項 目前CRISPR之商業化成果 21
     第四節 小結 22
     第三章 專利進步性之探討 24
     第一節 進步性之概念 24
     第一項 進步性概念介紹 24
     第二項 歐美進步性判斷之相關規範 27
     第三項 生物技術發明之進步性判斷方式 31
     第二節 發明所屬技術領域中具有通常知識者概念 38
     第一項 美國發明所屬技術領域中具有通常知識者之概念 39
     第二項 歐洲該領域技術人員之概念 40
     第三項 生物技術領域中具有通常知識者 41
     第三節 小結 45
     第四章 UC與BI之專利爭議與進步性之分析 47
     第一節 UC與BI申請之專利請求項分析與比較 47
     第一項 UC申請之CRISPR-Cas9專利請求項分析 47
     第二項 BI申請之CRISPR-Cas9專利請求項分析 50
     第三項 UC與BI申請之CRISPR-Cas9系統專利請求項比較 52
     第二節 UC與BI於美國之專利衝突程序與非顯而易知性分析 55
     第一項 背景事實 55
     第二項 專利審理暨訴願委員會之決議 (Decision of The United States Patent and Trademark Office, Patent Trial and Appeal Board) 56
     第三項 專利衝突程序之爭點與非顯而易知性分析 59
     第三節 UC與BI於歐洲之CRISPR專利爭議與發明性步驟分析 63
     第一項 UC於歐洲之專利申請情形與發明性步驟之分析 64
     第二項 BI於歐洲之專利申請情形與發明性步驟之分析 69
     第四節 小結 76
     第五章 結果與討論 78
     第一節 研究結果 78
     第二節 討論 85
     第六章 結論 90
     第一節 研究結論 90
     第二節 建議 93
     第一項 CRISPR專利申請實務建議 93
     第二項 未來研究建議 95
     參考文獻 98
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G1043642062en_US
dc.subject (關鍵詞) 進步性zh_TW
dc.subject (關鍵詞) 顯而易知zh_TW
dc.subject (關鍵詞) 發明性步驟zh_TW
dc.subject (關鍵詞) CRISPRzh_TW
dc.subject (關鍵詞) 成功的合理期望zh_TW
dc.subject (關鍵詞) Patent Non-Obvious Subject Matteren_US
dc.subject (關鍵詞) Obviousen_US
dc.subject (關鍵詞) Inventive stepen_US
dc.subject (關鍵詞) CRISPRen_US
dc.subject (關鍵詞) Reasonable expectation of successen_US
dc.title (題名) 從CRISPR專利爭議探討歐美專利進步性之研究zh_TW
dc.title (題名) A Study on Patent Non-Obvious Subject Matter of Europe and the US from the CRISPR Patent Disputeen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 一、 中文文獻
     
     (一) 專書
     袁仁捷,美國專利申請實務Ⅲ,袁仁傑,2017年7月。
     楊智傑,專利法,新學林,2014年9月。
     
     (二) 論文
     李育慶,KSR 案後美國法院非顯而易知判決之實證研究,國立交通大學科技法律研究所碩士論文,2008年6月。
     郭仲偉,生技醫藥相關發明之專利要件探討-以美國與台灣為例,國立政治大學法律學系碩士班學士後法學組論文,2005年7月。
     黃柏維,從美國專利法析論非顯而易知性之相關爭議,國立政治大學智慧財產研究所碩士論文,2012年7月。
     彭翔鴻,聯邦巡迴上訴法院於 KSR 案後非顯而易知性標準之實證研究,國立交通大學管理學院碩士在職專班科技法律組碩士論文,2010年1月。
     
     (三) 期刊
     王淑靜,歐洲專利申請制度與實務簡介,智慧財產季刊,53期,頁43-50,2005年。
     王懿融,方法專利及物品專利之區別,理律法律雜誌雙月刊,90年5月號,頁3-4,2001年5月。
     宋皇志,專利法中「發明所屬技術領域中具有通常知識者」之法實證研究,政大法學評論,146期,頁53-126,2016年9月。
     施雅儀,從 In re Kubin 案探討後 KSR 時代美國生物技術專利之顯而易知性審查, 智慧財產權月刊,128 期,頁53-79,2009 年 8 月。
     劉懿嫻,美國專利法非顯而易知性之新觀點:相同條件下的客觀指標,科技法學評論,7卷2期,頁181-219,2010年12月。
     謝祖松,美國專利法上「具有通常技術者」之探討,臺北大學法學論叢,76期,頁43-94,2010年12月。
     
     二、 英文文獻
     
     (一) 專書
     ALBERT LEHNINGER, MICHAEL COX & DAVID L. NELSON, LEHNINGER PRINCIPLES OF BIOCHEMISTRY (5 ed. 2008).
     DUNCAN BUCKNELL, PHARMACEUTICAL, BIOTECHNOLOGY, AND CHEMICAL INVENTIONS: WORLD PROTECTION AND EXPLOITATION (2011).
     JAMES D. WATSON, TANIA A. BAKER, STEPHEN P. BELL, ALEXANDER GANN, MICHAEL LEVINE & RICHARD LOSICK, MOLECULAR BIOLOGY OF THE GENE (6 ed. 2008).
     JEROME ROSENSTOCK, PATENT INTERFERENCE PRACTICE HANDBOOK (1998).
     PHILIP W. GRUBB AND PETER R. THOMSEN, PATENTS FOR CHEMICALS, PHARMACEUTICALS, AND BIOTECHNOLOGY: FUNDAMENTALS OF GLOBAL LAW, PRACTICE, AND STRATEGY (5 ed. 2010).
     
     (二) 期刊
     András Kupecz, Who owns CRISPR-Cas9 in Europe?, 32(12) NATURE BIOTECHNOLOGY 1194-1196 (2014).
     Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A. and Zhang F., Multiplex Genome Engineering Using CRISPR/Cas Systems, 339 SCIENCE 816-823 (2013).
     Deltcheva E., Chylinski K., Sharma C.M., Gonzales K., Chao Y., Pirzada Z.A., Eckert M.R., Vogel J. and Charpentier E., CRISPR RNA Maturation by Trans-Encoded Small RNA and Host Factor RNase III, 471(7340) NATURE 602-607 (2011).
     Fangyu Lin and Shyh-Jen Wang, Identification of the Factors that Result in Obviousness Rulings for Biotech Patents—An Updated Analysis of the US Federal Circuit Decisions after KSR, 9(11) HUMAN VACCINES & IMMUNOTHERAPEUTICS 2490-2495 (2013).
     Gaj T., Gersbach C.A. and Barbas C.F. III, ZFN, TALEN and CRISPR/Cas-Based Methods for Genome Engineering, 37(7) TRENDS IN BIOTECHNOLOGY 397-405 (2013).
     Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A. and Charpentier E., A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity, 337 SCIENCE 816-821 (2012).
     Jonathan J. Darrow, The Neglected Dimension of Patent Law’s PHOSITA Standard, 23(1) HARVARD JOURNAL OF LAW & TECHNOLOGY 227-258 (2009).
     Karen I. Boyd, Nonobviousness and the Biotechnology Industry: A Proposal for a Doctrine of Economic Nonobviousness, 12(2) BERKELEY TECHNOLOGY LAW JOURNAL 311-343 (1997).
     Marraffini L.A. and Sontheimer E.J., CRISPR Interference: RNA-Directed Adaptive Immunity in Bacteria and Archaea, 11(3) NATURE REVIEWS GENETICS 181-190 (2010).
     Minssen T., Meanwhile on the Other Side of the Pond: Why Biopharmaceutical Inventions that Were `Obvious to Try` Still Might Be Non-Obvious – Part I, 9 CHICAGO-KENT JOURNAL OF INTELLECTUAL PROPERTY 60-131 (2010).
     Mojica F.J.M., Díez-Villaseñor C., García-Martínez J. and Almendros C., Short Motif Sequences Determine the Targets of the Prokaryotic CRISPR Defence System, 155 MICROBIOLOGY 733-740 (2009).
     Overwalle G.V., Policy Levers Tailoring Patent Law to Biotechnology: Comparing U.S. and European Approaches, 1(2) UC IRVINE LAW REVIEW 435-517 (2011).
     Shyh-Jen Wang, The Obviousness Rejection as a Barrier to Biotech Patent Prosecution, 27(12) NATURE BIOTECHNOLOGY 1125-1126 (2009).
      
     (三) 法院判決
     Bristol-Myers Squibb Co. v. Teva Pharm. USA, Inc., 769 F.3d 1339 (Fed. Cir. 2014).
     Daiichi Sankyo v. Apotex, 501 F.3d 1254 (Fed. Cir. 2007).
     Diversified Biotech, Inc. v. Phenix Research Prod., Inc. No. CIV.A. 03-10941-RCL, 2004 WL 5645757 (D. Mass. Apr. 22, 2004).
     Ferring B.V. v. Waston Labs., Inc.-Florida, 764 F.3d 1401 (Fed. Cir. 2014).
     Graham v. John Deere Co. of Kansas City, 383 U.S. 1, 86 S. Ct. 684, 15 L. Ed. 2d 545 (1966).
     Hoffmann-La Roche Inc. v. Apotex Inc., 748 F.3d 1326 (Fed. Cir. 2014).
     Hotchkiss v. Greenwood, 52 U.S. 248, 13 L. Ed. 683 (1850).
     In re Bell, 991 F.2d 781 (Fed. Cir. 1993).
     In re Deuel, 51 F.3d 1552 (Fed. Cir. 1995).
     In re Droge, 695 F.3d 1334 (Fed. Cir. 2012).
     In re Kubin, 561 F.3d 1351 (Fed. Cir. 2009).
     Kimberly-Clark Corp. v. Johnson & Johnson, 745 F.2d 1437 (Fed. Cir. 1984).
     KSR Int’l Co. v. Teleflex Inc., 550 U.S. 398, 127 S. Ct. 1727, 167 L. Ed. 2d 705 (2007).
     Par Pharmaceuticals, Inc. v. TWi Pharmaceuticals, Inc., 624 Fed. Appx. 756, (Fed. Cir. 2015).
     Standard Oil Co. v. Am. Cyanamid Co., 774 F.2d 448 (Fed. Cir. 1985).
     WMS Gaming, Inc. v. Int’l Game Tech., 184 F.3d 1339 (Fed. Cir. 1999).
     
     (四) 其他
     College of Chemistry, University of California, Berkeley, Jennifer Doudna|Editas Medicine – The CRISPR, 9.1 CATALYST MAGAZINE (2014).
     Decision of the European Patent Office, Board of Appeal, Case 60/89 (Aug. 31, 1990), O.J. E.P.O. 268 (1992) relating to European Patent No. 0 006 694 (B1) concerning a method of making a selected protein.
     Decision of the European Patent Office, Board of Appeal, Case T 296/93 (Jul. 28, 1994).
     Decision of the European Patent Office, Board of Appeal, Case T 386/94 (Jan. 11, 1996).
     Decision of the European Patent Office, Board of Appeal, Case T 455/91 (June 20, 1994) O.J. E.P.O. 684 relating to European Patent No. 0 060 057 concerning the expression of polypeptides in yeast.
     Decision of the European Patent Office, Board of Appeal, Case T 412/93 (Nov. 21, 1994).
     Decision of the European Patent Office, Board of Appeal, Case T 500/91 (Oct. 21, 1992).
     Decision of the United States Patent and Trademark Office, Patent Trial and Appeal Board, Patent Interference No. 106,048 (DK) (PTAB. 2017), The Broad Institute v. The Regents of The University of California.
     Robert Sanders, Cheap and Easy Technique to Snip DNA Could Revolutionize Gene Therapy, BERKELEY NEWS (2013).
zh_TW
dc.identifier.doi (DOI) 10.6814/THE.NCCU.TIIPM.003.2018.F08-