Publications-Theses
Article View/Open
Publication Export
-
題名 CB-SEM和PLS-SEM在估計交互作用效果之比較
The comparison of estimation accuracy in interaction effect between CB-SEM and PLS-SEM作者 李昭鋆
Lee, Chao-Yun貢獻者 余民寧
Yu, Ming-Ning
李昭鋆
Lee, Chao-Yun關鍵詞 CB-SEM
PLS-SEM
交互作用
CB-SEM
PLS-SEM
Interaction effect日期 2018 上傳時間 27-Jul-2018 12:41:33 (UTC+8) 摘要 本研究研究目的主要在於瞭解CB-SEM和PLS-SEM之指標乘積法、正交法、二階段法、無限制法在結構方程式模型之交互作用中,對迴歸係數、因素負荷量、解釋量、因素分數估計結果之良窳;此外,並瞭解指標數目、人數、資料類型對估計之影響。故本研究之實驗情況,共分三種指標數目、九種人數、二種資料類型,合計五十四種類型,並在每一類型模擬五百次。研究結果顯示,以整體論,在大部份的情況下,CB-SEM在迴歸係數、解釋量、因素負荷量表現較佳,而PLS-SEM在估計因素分數上較佳。而精確來說,若研究目的乃欲精確估計因數分數,則三百人、四題以上,建議採取PLS-SEM二階段法;若研究目是在精確估計迴歸係數、解釋量,若人數在四百人以上,建議採用CB-SEM無限制法。另外,本研究亦發現在大部份的情況下,指標數目愈多,資料型態為連續型態者,其估計效果愈佳。
The purpose of this study is to find out the results of estimation about interaction effects. The estimations come from the product indicator, two stage, orthogonalizing, and unconstrained approach which are estimated by CB-SEM and PLS-SEM separately. In the research, regression coefficient, factor loading, factor score, and r square are calculated by eight kinds of methods. Besides, night kinds of sample sizes, three kinds of number of indicators, and two kinds of data types are also studied to realize how they influence the estimations. Therefore, there are fifty-four situations. The results show that the estimation of regression coffoeicient, r square and factor loading are excellent by CB-SEM, but the estimation of factor score is better by PLS-SEM under most situations. If the object is to estimate the factor score, two satge approach of PLS-SEM is suggested based on the condition of sample size larger than 300 and 4 indicators. However, if the aim is to estimate the regression coffoeicient , r square, or factor loading, the unconstrained method of CB-SEM is the best choice when sample size is larger than 400. In addition, the continuous data type and more numbers of indicators are good for estimation under most conditions.參考文獻 朱經明(2007)。教育統計學 。臺北市:五南。 余民寧(2006)。潛在變項模式:SIMPLIS的應用。臺北市: 高等教育。 邱皓政(2003)。結構方程模式 : LISREL的理論、技術與應用。臺北 市: 雙葉書廊。 陳順宇 (2007)。結構方程模式 : Amos操作。臺北市: 心理總經銷. 黃文璋 (2003)。數理統計。臺北市: 華泰. 黃芳銘 (2010)。結構方程模式理論與應用。臺北市: 五南. 蕭文龍 (2015)。統計分析入門與應用-SPSS中文版+PLS- SEM(SmartPLS)。臺北市:碁峰。 Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park, CA: Sage. Bartholomew, D. J., & Knott, M. (1999). Latent variable models and factor analysis. New York: Oxford University Press. Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley. Bollen, K. A., & Paxton, P. (1998). Two-stage least squares estimation of interaction effects. In R. E. Schumacker & G. A. Marcoulides (Eds.), Interaction and nonlinear effects in structural equation modeling. Mahwah, NJ: Lawrence Erlbaum Associates. Brandt, H., Kelava, A., & Klein, A. (2014). A simulation study comparing recent approaches for the estimation of nonlinear effects in sem under the condition of nonnormality. Structural Equation Modeling: A Multidisciplinary Journal, 21(2), 181-195. Chen, C. (2016). The role of resilience and coping styles in subjective well-being among chinese university students. Asia-Pacific Education Researcher, 25(3), 377-387. Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research, 14(2), 189-217. Cohen, J. (1978). Partialed products are interactions; partialed powers are curve components. Psychological Bulletin, 85(4), 858-866. Cohen, J. (1988).Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Eribaum. Falenchuk, O. (2006). A study of unidimensional IRT models for items scored in multiple ordered response categories. (Doctoral dissertation Ph.D.), University of Toronto (Canada), Ann Arbor. Retrieved from http://search.proquest.com/docview/304929555? accountid=10067 ProQuest Dissertations & Theses A&I database. (304929555) Fox, J., Nie, Z., Byrnes, J., Culbertson, M., DebRoy, S., Friendly, M., . . . Monette, G. (2017). Package ‘sem’. Retrieved from https://cran.r- project.org/web/packages/lavaan/lavaan.pdf Garson, G. D. (2016). Partial least squares: regression and structural equation models. Asheboro, NC: Statistical Publishing Associates. Goodhue, D. L., Lewis, W., & Thompson, R. (2012). Does pls have advantages for small sample size or non-normal data? Mis Quarterly, 36(3), 981-1001. Gordon, M. K. (2016). Achievement Scripts: Media Influences on Black Students` Academic Performance, Self-Perceptions, and Career Interests. Journal of Black Psychology, 42(3), 195-220. Harwell, M., Stone, C., Hsu, T. & Kirisci, L. (1996). Monte Carlo studies in item response theory. Applied Psychological Measurement, 20,101-125. Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014). A primer on partial least squares structural equations modeling (PLS-SEM). Thousand Oaks: SAGE Publications. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS- SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152. Henseler, J., & Chin, W. W. (2010). A comparison of approaches for the analysis of interaction effects between latent variables using partial least squares path modeling. Structural Equation Modeling: A Multidisciplinary Journal, 17(1), 82-109. Henseler, J., & Fassott, G. (2010). Testing moderating effects in pls path models: an illustration of available procedures. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial least squares: Concepts, methods and applications. New York : Springer . Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit inde xes in covariance structure analysis: criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. Hu, L. T., Bentler, P. M., & Kano, Y. (1992). Can test statistics in covariance structure-analysis be trusted. Psychological Bulletin, 112(2), 351-362. Jöreskog, K. G., & Wallentin, F. Y. (1996). Nonlinear structural equation models: The Kenny-Judd model with interaction effects. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling (pp. 57-89). Mahwh, NJ: Lawrence Erlbaum Jöreskog, K. G., Cudeck, R., Du Toit, S. H. C., & Sörbom, D. (2001). Structural equation modeling, present and future : A festschrift in honor of Karl Jöreskog. Lincolnwood, IL: Scientific Software International. Kaplan, D. (2009). Structural equation modeling : Foundations and extensions (2nd ed.. ed.). Los Angeles: Los Angeles : SAGE. Kenny, D. A., & Judd, C. M. (1984). Estimating the nonlinear and interactive effects of latent-variables. Psychological Bulletin, 96(1), 201-210. Klein, A., & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. Psychometrika, 65(4), 457-474. Kraemer, H. C., & Blasey, C. M. (2004). Centring in regression analyses: a strategy to prevent errors in statistical inference. International Journal of Methods in Psychiatric Research, 13(3), 141-151. Leite, W. L., & Zuo, Y. Z. (2011). Modeling Latent Interactions at Level 2 in Multilevel Structural Equation Models: An Evaluation of Mean-Centered and Residual-Centered Unconstrained Approaches. Structural Equation Modeling: A Multidisciplinary Journal, 18(3), 449-464. Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). On the merits of orthogonalizing powered and product terms: Implications for modeling interactions among latent variables. Structural Equation Modeling: A Multidisciplinary Journal, 13(4), 497-519. Lohmöller, J.-B. (1989). Latent variable path modeling with partial least squares. Heidelberg, Germany: Physica-Verlag. Marquardt, D. W. (1980). You should standardize the predictor variables in your regression model. Journal of the American Statistics Association, 75, 87-91. Marsh, H. W., Wen, Z. L., & Hau, K. T. (2004). Structural equation models of latent interactions: Evaluation of alternative estimation strategies and indicator construction. Psychological Methods, 9(3), 275-300. Martínez-Ruiz, A., & Aluja-Banet, T. (2013). Two-step PLS path modeling mode B: Nonlinear and interaction effects between formative constructs. In H. A. W. W. Chin, V. E. Vinzi, G. Russolillo, & L. Trinchera (Eds.), New perspectives in partial least squares and related methods. Springer: New York. Monecke, A. (2013). Package ‘semPLS’. Retrieved from https://cran.r- project.org/web/packages/semPLS/index.html Moulder, B. C., & Algina, J. (2002). Comparison of methods for estimating and testing latent variable interactions. Structural Equation Modeling, 9(1), 1-19. Mueller, R. O. (1996). Basic principles of structural equation modeling : An introduction to LISREL and EQS. New York: Springer. Muthén, L. K., & Muthén, B. O. (2017). Mplus user`s guide: Version 8. Los Angeles, CA: Muthen & Muthen. Park, H. (2000). Comparison of IRT models for ordered polytomous response data(Order No. 9983591). Available from ProQuest Dissertations & Theses A&I. (304612642). Retrieved from http://search.proquest.com/docview/304612642? accountid=10067 Quintana, S. M., & Maxwell, S. E. (1999). Implications of recent developments in structural equation modeling for counseling psychology. Counseling Psychologist, 27(4), 485-527. Qureshi, I., & Compeau, D. (2009). Assessing between- group differences in information systems research: A comparison of covariance- and component-based sem. Mis Quarterly, 33(1), 197-214. Reinartz, W., Haenlein, M., & Henseler, J. (2009). An empirical comparison of the efficacy of covariance- based and variance-based SEM. International Journal of Research in Marketing, 26(4), 332-344. Rossee, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1-36. Rosseel, Y., Oberski, D., Byrnes, J., Vanbrabant, L., Savalei, V., Merkle, E., . . . Barendse, M. (2015). Package ‘lavaan’. Retrieved from https://cran.r- project.org/web/packages/lavaan/lavaan.pdf Schumacker, R. E. (2002). Latent variable interaction modeling. Structural Equation Modeling, 9(1), 40-54. Schumacker, R. E. (2016). A beginner`s guide to structural equation modeling. New York : Routledge. Sharma, P. N., & Kim, K. H. (2013). A comparison of PLS and ML bootstrapping techniques in SEM: A Monte Carlo Study. In H. Abdi, W. W. Chin, V. Esposito Vinzi, G. Russolillo, & L. Trinchera (Eds.), New perspectives in partial least squares and related methods (pp. 201- 208). New York, NY: Springer New York. Wall, M. M., & Amemiya, Y. (2001). Generalized appended product indicator procedure for nonlinear structural equation analysis. Journal of Educational and Behavioral Statistics, 26(1), 1-29. Wang, L. J., & Preacher, K. J. (2015). Moderated mediation analysis using Bayesian methods. Structural Equation Modeling: A Multidisciplinary Journal, 22(2), 249-263. Wen, Z. L., Marsh, H. W., & Hau, K. T. (2010). Structural equation models of latent interactions: An appropriate standardized solution and its scale-free properties. Structural Equation Modeling: A Multidisciplinary Journal, 17(1), 1-22. Yang-Wallentin, F. (2001). Comparisons of the ML and TSLS estimators for the Kenny-Judd. In D. Sörbom, S. H. C. Du Toit, & R. Cudeck (Eds.), Structural equation modeling present and future : A festschrift in honor of Karl Jöreskog (pp. 425-442). Lincolnwood, IL Scientific Software International. 描述 博士
國立政治大學
教育學系
102152502資料來源 http://thesis.lib.nccu.edu.tw/record/#G1021525021 資料類型 thesis dc.contributor.advisor 余民寧 zh_TW dc.contributor.advisor Yu, Ming-Ning en_US dc.contributor.author (Authors) 李昭鋆 zh_TW dc.contributor.author (Authors) Lee, Chao-Yun en_US dc.creator (作者) 李昭鋆 zh_TW dc.creator (作者) Lee, Chao-Yun en_US dc.date (日期) 2018 en_US dc.date.accessioned 27-Jul-2018 12:41:33 (UTC+8) - dc.date.available 27-Jul-2018 12:41:33 (UTC+8) - dc.date.issued (上傳時間) 27-Jul-2018 12:41:33 (UTC+8) - dc.identifier (Other Identifiers) G1021525021 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/118984 - dc.description (描述) 博士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 教育學系 zh_TW dc.description (描述) 102152502 zh_TW dc.description.abstract (摘要) 本研究研究目的主要在於瞭解CB-SEM和PLS-SEM之指標乘積法、正交法、二階段法、無限制法在結構方程式模型之交互作用中,對迴歸係數、因素負荷量、解釋量、因素分數估計結果之良窳;此外,並瞭解指標數目、人數、資料類型對估計之影響。故本研究之實驗情況,共分三種指標數目、九種人數、二種資料類型,合計五十四種類型,並在每一類型模擬五百次。研究結果顯示,以整體論,在大部份的情況下,CB-SEM在迴歸係數、解釋量、因素負荷量表現較佳,而PLS-SEM在估計因素分數上較佳。而精確來說,若研究目的乃欲精確估計因數分數,則三百人、四題以上,建議採取PLS-SEM二階段法;若研究目是在精確估計迴歸係數、解釋量,若人數在四百人以上,建議採用CB-SEM無限制法。另外,本研究亦發現在大部份的情況下,指標數目愈多,資料型態為連續型態者,其估計效果愈佳。 zh_TW dc.description.abstract (摘要) The purpose of this study is to find out the results of estimation about interaction effects. The estimations come from the product indicator, two stage, orthogonalizing, and unconstrained approach which are estimated by CB-SEM and PLS-SEM separately. In the research, regression coefficient, factor loading, factor score, and r square are calculated by eight kinds of methods. Besides, night kinds of sample sizes, three kinds of number of indicators, and two kinds of data types are also studied to realize how they influence the estimations. Therefore, there are fifty-four situations. The results show that the estimation of regression coffoeicient, r square and factor loading are excellent by CB-SEM, but the estimation of factor score is better by PLS-SEM under most situations. If the object is to estimate the factor score, two satge approach of PLS-SEM is suggested based on the condition of sample size larger than 300 and 4 indicators. However, if the aim is to estimate the regression coffoeicient , r square, or factor loading, the unconstrained method of CB-SEM is the best choice when sample size is larger than 400. In addition, the continuous data type and more numbers of indicators are good for estimation under most conditions. en_US dc.description.tableofcontents 第一章 緒論 1 第一節 研究緣起 1 第二節 待答問題 2 第三節 名詞釋義 3 第四節 研究貢獻 7 第五節 研究限制 8 第二章 文獻探討 9 第一節 CB-SEM與PLS-SEM之比較 9 第二節 交互作用 12 第三節 模擬之相關研究 21 第三章 研究方法 31 第一節 研究步驟 31 第二節 模擬因子與估計精準度 32 第三節 資料產生方法 34 第四節 資料處理與分析 35 第四章 實驗結果 37 第一節 全體模擬結果分析 37 第二節 CB-SEM、PLS-SEM之迴歸係數結果分析 45 第三節 CB-SEM、PLS-SEM之解釋力結果分析 65 第四節 因素分數之結果分析 71 第五節 因素負荷量之結果分析 94 第六節 綜合討論 114 第五章 結論與建議 145 第一節 結論 145 第二節 建議 146 參考文獻 149 附錄:虛擬程式碼 155 zh_TW dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G1021525021 en_US dc.subject (關鍵詞) CB-SEM zh_TW dc.subject (關鍵詞) PLS-SEM zh_TW dc.subject (關鍵詞) 交互作用 zh_TW dc.subject (關鍵詞) CB-SEM en_US dc.subject (關鍵詞) PLS-SEM en_US dc.subject (關鍵詞) Interaction effect en_US dc.title (題名) CB-SEM和PLS-SEM在估計交互作用效果之比較 zh_TW dc.title (題名) The comparison of estimation accuracy in interaction effect between CB-SEM and PLS-SEM en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) 朱經明(2007)。教育統計學 。臺北市:五南。 余民寧(2006)。潛在變項模式:SIMPLIS的應用。臺北市: 高等教育。 邱皓政(2003)。結構方程模式 : LISREL的理論、技術與應用。臺北 市: 雙葉書廊。 陳順宇 (2007)。結構方程模式 : Amos操作。臺北市: 心理總經銷. 黃文璋 (2003)。數理統計。臺北市: 華泰. 黃芳銘 (2010)。結構方程模式理論與應用。臺北市: 五南. 蕭文龍 (2015)。統計分析入門與應用-SPSS中文版+PLS- SEM(SmartPLS)。臺北市:碁峰。 Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park, CA: Sage. Bartholomew, D. J., & Knott, M. (1999). Latent variable models and factor analysis. New York: Oxford University Press. Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley. Bollen, K. A., & Paxton, P. (1998). Two-stage least squares estimation of interaction effects. In R. E. Schumacker & G. A. Marcoulides (Eds.), Interaction and nonlinear effects in structural equation modeling. Mahwah, NJ: Lawrence Erlbaum Associates. Brandt, H., Kelava, A., & Klein, A. (2014). A simulation study comparing recent approaches for the estimation of nonlinear effects in sem under the condition of nonnormality. Structural Equation Modeling: A Multidisciplinary Journal, 21(2), 181-195. Chen, C. (2016). The role of resilience and coping styles in subjective well-being among chinese university students. Asia-Pacific Education Researcher, 25(3), 377-387. Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research, 14(2), 189-217. Cohen, J. (1978). Partialed products are interactions; partialed powers are curve components. Psychological Bulletin, 85(4), 858-866. Cohen, J. (1988).Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Eribaum. Falenchuk, O. (2006). A study of unidimensional IRT models for items scored in multiple ordered response categories. (Doctoral dissertation Ph.D.), University of Toronto (Canada), Ann Arbor. Retrieved from http://search.proquest.com/docview/304929555? accountid=10067 ProQuest Dissertations & Theses A&I database. (304929555) Fox, J., Nie, Z., Byrnes, J., Culbertson, M., DebRoy, S., Friendly, M., . . . Monette, G. (2017). Package ‘sem’. Retrieved from https://cran.r- project.org/web/packages/lavaan/lavaan.pdf Garson, G. D. (2016). Partial least squares: regression and structural equation models. Asheboro, NC: Statistical Publishing Associates. Goodhue, D. L., Lewis, W., & Thompson, R. (2012). Does pls have advantages for small sample size or non-normal data? Mis Quarterly, 36(3), 981-1001. Gordon, M. K. (2016). Achievement Scripts: Media Influences on Black Students` Academic Performance, Self-Perceptions, and Career Interests. Journal of Black Psychology, 42(3), 195-220. Harwell, M., Stone, C., Hsu, T. & Kirisci, L. (1996). Monte Carlo studies in item response theory. Applied Psychological Measurement, 20,101-125. Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014). A primer on partial least squares structural equations modeling (PLS-SEM). Thousand Oaks: SAGE Publications. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS- SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152. Henseler, J., & Chin, W. W. (2010). A comparison of approaches for the analysis of interaction effects between latent variables using partial least squares path modeling. Structural Equation Modeling: A Multidisciplinary Journal, 17(1), 82-109. Henseler, J., & Fassott, G. (2010). Testing moderating effects in pls path models: an illustration of available procedures. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial least squares: Concepts, methods and applications. New York : Springer . Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit inde xes in covariance structure analysis: criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. Hu, L. T., Bentler, P. M., & Kano, Y. (1992). Can test statistics in covariance structure-analysis be trusted. Psychological Bulletin, 112(2), 351-362. Jöreskog, K. G., & Wallentin, F. Y. (1996). Nonlinear structural equation models: The Kenny-Judd model with interaction effects. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling (pp. 57-89). Mahwh, NJ: Lawrence Erlbaum Jöreskog, K. G., Cudeck, R., Du Toit, S. H. C., & Sörbom, D. (2001). Structural equation modeling, present and future : A festschrift in honor of Karl Jöreskog. Lincolnwood, IL: Scientific Software International. Kaplan, D. (2009). Structural equation modeling : Foundations and extensions (2nd ed.. ed.). Los Angeles: Los Angeles : SAGE. Kenny, D. A., & Judd, C. M. (1984). Estimating the nonlinear and interactive effects of latent-variables. Psychological Bulletin, 96(1), 201-210. Klein, A., & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. Psychometrika, 65(4), 457-474. Kraemer, H. C., & Blasey, C. M. (2004). Centring in regression analyses: a strategy to prevent errors in statistical inference. International Journal of Methods in Psychiatric Research, 13(3), 141-151. Leite, W. L., & Zuo, Y. Z. (2011). Modeling Latent Interactions at Level 2 in Multilevel Structural Equation Models: An Evaluation of Mean-Centered and Residual-Centered Unconstrained Approaches. Structural Equation Modeling: A Multidisciplinary Journal, 18(3), 449-464. Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). On the merits of orthogonalizing powered and product terms: Implications for modeling interactions among latent variables. Structural Equation Modeling: A Multidisciplinary Journal, 13(4), 497-519. Lohmöller, J.-B. (1989). Latent variable path modeling with partial least squares. Heidelberg, Germany: Physica-Verlag. Marquardt, D. W. (1980). You should standardize the predictor variables in your regression model. Journal of the American Statistics Association, 75, 87-91. Marsh, H. W., Wen, Z. L., & Hau, K. T. (2004). Structural equation models of latent interactions: Evaluation of alternative estimation strategies and indicator construction. Psychological Methods, 9(3), 275-300. Martínez-Ruiz, A., & Aluja-Banet, T. (2013). Two-step PLS path modeling mode B: Nonlinear and interaction effects between formative constructs. In H. A. W. W. Chin, V. E. Vinzi, G. Russolillo, & L. Trinchera (Eds.), New perspectives in partial least squares and related methods. Springer: New York. Monecke, A. (2013). Package ‘semPLS’. Retrieved from https://cran.r- project.org/web/packages/semPLS/index.html Moulder, B. C., & Algina, J. (2002). Comparison of methods for estimating and testing latent variable interactions. Structural Equation Modeling, 9(1), 1-19. Mueller, R. O. (1996). Basic principles of structural equation modeling : An introduction to LISREL and EQS. New York: Springer. Muthén, L. K., & Muthén, B. O. (2017). Mplus user`s guide: Version 8. Los Angeles, CA: Muthen & Muthen. Park, H. (2000). Comparison of IRT models for ordered polytomous response data(Order No. 9983591). Available from ProQuest Dissertations & Theses A&I. (304612642). Retrieved from http://search.proquest.com/docview/304612642? accountid=10067 Quintana, S. M., & Maxwell, S. E. (1999). Implications of recent developments in structural equation modeling for counseling psychology. Counseling Psychologist, 27(4), 485-527. Qureshi, I., & Compeau, D. (2009). Assessing between- group differences in information systems research: A comparison of covariance- and component-based sem. Mis Quarterly, 33(1), 197-214. Reinartz, W., Haenlein, M., & Henseler, J. (2009). An empirical comparison of the efficacy of covariance- based and variance-based SEM. International Journal of Research in Marketing, 26(4), 332-344. Rossee, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1-36. Rosseel, Y., Oberski, D., Byrnes, J., Vanbrabant, L., Savalei, V., Merkle, E., . . . Barendse, M. (2015). Package ‘lavaan’. Retrieved from https://cran.r- project.org/web/packages/lavaan/lavaan.pdf Schumacker, R. E. (2002). Latent variable interaction modeling. Structural Equation Modeling, 9(1), 40-54. Schumacker, R. E. (2016). A beginner`s guide to structural equation modeling. New York : Routledge. Sharma, P. N., & Kim, K. H. (2013). A comparison of PLS and ML bootstrapping techniques in SEM: A Monte Carlo Study. In H. Abdi, W. W. Chin, V. Esposito Vinzi, G. Russolillo, & L. Trinchera (Eds.), New perspectives in partial least squares and related methods (pp. 201- 208). New York, NY: Springer New York. Wall, M. M., & Amemiya, Y. (2001). Generalized appended product indicator procedure for nonlinear structural equation analysis. Journal of Educational and Behavioral Statistics, 26(1), 1-29. Wang, L. J., & Preacher, K. J. (2015). Moderated mediation analysis using Bayesian methods. Structural Equation Modeling: A Multidisciplinary Journal, 22(2), 249-263. Wen, Z. L., Marsh, H. W., & Hau, K. T. (2010). Structural equation models of latent interactions: An appropriate standardized solution and its scale-free properties. Structural Equation Modeling: A Multidisciplinary Journal, 17(1), 1-22. Yang-Wallentin, F. (2001). Comparisons of the ML and TSLS estimators for the Kenny-Judd. In D. Sörbom, S. H. C. Du Toit, & R. Cudeck (Eds.), Structural equation modeling present and future : A festschrift in honor of Karl Jöreskog (pp. 425-442). Lincolnwood, IL Scientific Software International. zh_TW dc.identifier.doi (DOI) 10.6814/DIS.NCCU.EDU.013.2018.F02 -