學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

題名 車載側拍影像定位定向之研究
Orientation Determination of Vehicle-based Side Photographic Images
作者 陳玠穎
Chen, Chieh-Ying
貢獻者 邱式鴻
Chio, Shih-Hong
陳玠穎
Chen, Chieh-Ying
關鍵詞 紋理敷貼
近景攝影測量
車載影像
光束法平差
連結線
Texture-mapping
Close-range photogrammetry
Vehicle-based image
Bundle adjustment
Tie line
日期 2018
上傳時間 27-Aug-2018 14:55:51 (UTC+8)
摘要 三維建物模型中的牆面紋理敷貼可以來自空載傾斜攝影之傾斜影像,但在台灣都會區的建物密集,導致空載傾斜攝影於某些區域亦難取得靠近地面的建物影像,此可由近景攝影所拍攝之近景影像彌補,而測量車所取得之車載側拍影像正是快速獲取近景影像之來源。以車載側拍影像執行建物牆面影像敷貼時,須先以光束法平差完成影像之方位求解。而以往求解過程需依靠影像間共同的連結點,但都市區車載側拍影像中存在如招牌等直線特徵,亦可於光束法平差時作為連結線,因此本研究的主要目的即是研究當使用測量車距建物垂直距離約3m傾斜拍攝時,同一相機側拍前後兩張重疊率約60%,雙相機光軸水平夾角約100度,相鄰攝影站的雙相機側拍影像重疊率約80%時,在須滿足三維建物模型中牆面紋理敷貼(即LOD3)精度要求下,以光束法平差執行車載側拍影像定位定向時,除了探討在測區兩端各佈設一組共四個控制點,於使用單相機與雙相機車載側拍影像的最多張數和最佳張數,並分析加入連結線是否能提升精度。研究成果顯示雙相機車載側拍影像定位定向結果較佳,且雙相機車載側拍影像在符合LOD3模型精度下,測區兩端各佈設一組控制點時最多張數為70張影像,測區長約245m;而由研究結果建議最佳張數為28張影像,測區長約90m有較佳影像定位定向的結果。此外,本研究使用光束法平差執行車載側拍影像定位定向時,成果顯示加入連結線未能顯著提升精度,但加入連結線以自率光束法平差執行影像定位定向時則可些微提升定位定向的精度。
The source for facade texture-mapping for 3D building models can be obtained from aerial oblique images. However, the images of high building lower parts are difficult to be obtained in some areas. Close-range images can remedy such a shortcoming of aerial oblique images. Additionally, close-range images can be collected faster and more effieiently by Surveying Vechicle. However, before facade texture mapping, bundle adjustment should be implemented to orient these vehicle-based side photographic images. Generally speaking, tie points and control points as well as camera parameters are necessary in bundle adjustment. Since straight line features of, e.g. images of signboards, exist in these vehicle-based images, they can be also treated as tie lines in bundle adjustment. In this study, it is supposed that vertical distance from surveying vehicle to buildings is 3m, the overlap of adjacent images from one camera and two cameras is 60 percent and 80 percent, respectively, and the horizontal angle bwteen the optical axis between two cameras is about 100 degree. The purpose is to find out the most number and the best number of vehicle-based side photographed images in bundle adjustment on the basis of two set control points, totally four points, at both sides of test area and under the accuracy requirement of 3D LOD3 building model. The other purpose is to discuss the potential accuracy by using tie lines in bundle adjustment. The result shows that vehicle-based side photographic image orientation determination from simultaneously two cameras is better than that using images from one camera. The most number of vehicle-based side photographed images using simultaneously two cameras is 70, ca. 245m. The best number of using simultaneously two cameras is 28, ca. 90m. Although the other result shows that no accuracy improvement of vehicle-based side photographic image orientation determination with adding tie lines in bundle adjustment, the result still shows accuracy is little improved in orientation determination with adding tie lines in self-calibration bundle adjustment.
參考文獻 內政部國土測繪中心,2016,「104 及 105 年度發展車載移動測繪系統(MMS)作業」,內政部國土測繪中心車載移動測繪系統(MMS)作業工作總報告。
內政部,2017,「106年度三維地形圖資技術發展工作案」,成果報告。
李玉華、江凱偉、饒見有,2010,「測量車之系統率定及其效能分析」,『航測及遙測學刊』,15(3):229-242。
李玉華,2010,「車載移動式製圖系統之系統率定及其直接的裡定位之效能分析」,國立成功大學測量工程學系碩士論文:台南。
李德仁、袁修孝,2002,「解析攝影測量平差中系統誤差的補償」。頁181-183,收錄於李德仁編,『誤差處理與可靠性理論』,武漢: 武漢大學出版社。
林汝晏,2013,「航空影像控制實體於近景影像光束法區域平差控制之精度探討」,國立政治大學地政學系碩士學位論文:臺北。
林舒葦,2016,「以光束法平差提升地面移動測繪系統精度之研究」,國立成功大學測量及空間資訊學系碩士學位論文:臺南。
吳建億,2009,「使用物空間條件進行測量車相機檢定」,國立成功大學測量及空間資訊學系碩士學位論文:臺南。
彭念豪,2005,「以控制直線進行影像外方位參數求解之自動化系統」,國立臺灣大學土木工程學系碩士學位論文:臺北。
黃文利,2001,「近景攝影測量應用於三維建物模型側面影像敷貼之研究」,國立成功大學測量及空間資訊學系碩士學位論文:臺南。
趙鍵哲、彭念豪,2005,「以光達資料之控制直線求解單張像片外方位參數 之模式探討與可行性評估」,『航測及遙測學刊』,10(1):89-102。
蔡展榮、吳建億、李明軒,2010,「測量車雙相機同步攝影測量」,『地籍測量: 中華民國地籍測量學會會刊』,29(1):13-26。
蔡富安、陳良健,2010,「三維數位城市之建置與應用」,『國土資訊系統通訊』,73(4):18-30。
蔡富安、張智安、張桓、陳良健、陳杰宗,2013,「多尺度三維數位房屋模型建置」,『航測及遙測學刊』,17(4):267-283。
藍文浩,2011,「測量車前拍影像空三網形評估」,國立成功大學測量及空間資訊學系碩士學位論文:臺南。
蕭伊伶,2013,「控制影像於多時期影像方位解算之分析」,臺灣大學土木工程學研究所學位論文:臺北
Agisoft, 2016, Agisoft PhotoScan User Manual Professional Edition Version 1.2 , Russia: Agisoft LLC.
Baillard, C., Zisserman, A., 2000, “A plane sweep strategy for the 3Dreconstruction of buildings from multiple images”, International Archives of Photogrammetry and Remote Sensing, 33:56–62.
Bäumker, M., Heimes,F. J., 2001, “New calibration and computing method for direct georeferencing of image and scanner data using the position and angular data of an hybrid inertial navigation system. ” Paper presented at OEEPE Workshop Integrated Sensor Orientation, Stockholm, March.
Brown, D. C.,1968, “Advanced Methods for the Calibration of Metric Cameras”, Technical report DA-44-009-AMG-1457. FL: DBA Systems.
Brown, D. C., 1971, “Close-Range Camera Calibration”, Photogrammetric Engineering, 37(8):855-866.
Cabo, C., S. García Cortés, and C. Ordoñez., 2015, "Mobile Laser Scanner data for automatic surface detection based on line arrangement." Automation in Construction 58: 28-37.
Cavegn, S., Nebiker, S.,and Haala, N. , 2016, “A SYSTEMATIC COMPARISON OF DIRECT AND IMAGE-BASED GEOREFERENCING IN CHALLENGING URBAN AREAS”, International Archives of Photogrammetry and Remote Sensing, XLI-B1:529–536.
Choi, K., Tanathong, S ., Kim, H., and Lee, I., 2013, “Realtime Image Matching for Vision Based Car Navigation with Built-in Sensory Data”, ISPRS Annals of Remote Sensing and Spatial Information Sciences, II-3/W2:1 -6.
Drap, P., Lefèvre, J., 2016, “ An exact formula for calculating inverse radial lens distortions. ” Sensors, 16(6): 807.
Eugster, H., Huber, F., Nebiker, S., and Gisi, A., 2012, “Integrated Georeferencing of Stereo Image Sequences Captured with a Stereovision Mobile Mapping System - Approaches and Practical Results ”, International Archives of Photogrammetry and Remote Sensing, XXXIX-B1:309–314.
Gröger, G., Kolbe, T.H., Czerwinski, A., Nagel, C., 2008, “OpenGIS® City Geography Markup Language (CityGML) Encoding Standard”, Category: OpenGIS® Encoding Standard, Version:1.0.0.
Habib, A., Morgan, M., Kim, E. M., and Cheng, R. , 2004, “ Linear features in photogrammetric activities”, Paper presented at ISPRS Congress, Istanbul, Turkey, July.
Hung, C. H., Chang, W. C., and Chen, L. C., 2016, “ORIENTATION MODELING FOR AMATEUR CAMERAS BY MATCHING IMAGE LINE FEATURES AND BUILDING VECTOR DATA. ” ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B3:39–42.
Kada, M., Klinec, D., and Haala, N., 2005, “Facade Texturing for rendering 3D city models. ”, Paper presented at ASPRS Conference, Bethesda, Maryland, March 7- March 11.
Kang, Z., Zlatanova, S., and Gorte, B., 2007, “Automatic Detection of Range Variance of Facades from Vehicle- Based Image Sequence. ”, Paper presented at 5th International Symposium on Mobile Mapping Technology MMT ’07, Padua, Italy, May 29- May 30.
Kang, Z., Zlatanova, S., and Gorte, B., 2007(a), “Semi-automatic registration between vehicle-based image sequence and 2d vector map. ”, Paper presented at 7th International Geomatic Week Conference, Barcelona, Spain, February 20- February23.
Kang, Z., Zhang, Z., Zhang, Z., and Zlatanova, S., 2007(b),“Rapidly Realizing 3D Visualisation for Urban Street Based on Multi-Source Data Integration”, pp.149-196 in Geomatics Solutions for Disaster Management, edited by Li, J., Zlatanova, S.,and Fabbri, A., New York: Springer.
Koopman, M. J., Soffers, P., Kastelijns, M., Ntarladima, A. M., Ten Kate, J., Tijssen, T. P. M., and Van der Spek, S. C., 2015, Exploring Photogrammetric Point Clouds, Delft:Geomatics Synthesis Project.
Mikhail, E. M., Bethel, J. S., & McGlone, J. C., 2001, Introduction to modern photogrammetry, New York:John Wiley & Sons,Inc.
Robles-Ortega, M. D., Ortega, L. and Feito, F. R., 2013, “A new approach to create textured urban models through genetic algorithms”, International Journal of Geographical Information Science, 243:1-19.
Pix4DMapper (2017). Industry Mapping Master Mapmaking. Retrieved August 17, 2017 from Taiwan on the World Wide Web: https://pix4d.com/industry/mapping/.
Pix4DMapper (2017). How to convert the Camera Model Internal Parameters from Brown 1964/ Heikkila 1997/ Fraser 1997 to Pix4D Camera Model Definition. Retrieved August 17, 2017 from Taiwan on the World Wide Web: https://support.pix4d.com/hc/en-us/articles/203824175-How-to-convert-the-Camera-Model-Internal-Parameters-from-Brown-1964-Heikkila-1997-Fraser-1997-to-Pix4D-Camera-Model-Definition?flash_digest=82f970a13cabc0c21f9d0151c8a3c0990487efd7#gsc.tab=0.
PHOCAD, 2005, PHIDIAS Image Orientation manual Version 2.85, Germany: PHOCAD Ingenieurgesellschaft mbH.
PHOCAD(2010).PHOCAD Ingenieurgesellschaft-Software for Photogrammetry and Laser scanning. Retrieved September 1, 2000 from Taiwan on the World Wide Web: http://www.phocad.de/en/en.html.
Photometrix, 2010, Users Manual for iWitness and iWitnessPRO, Australia: Photometrix.
Schenk, T., 2004, “From point-based to feature-based aerial triangulation”, ISPRS Journal of Photogrammetry and Remote Sensing, 58:315-329.
Tell, D., 2002, Wide Baseline Matching with Applications to Visual Servoing, Unpublished doctoral dissertation, Royal Institute of Technology, Sweden.
Wolf,P. R., Dewitt, B. A., Wilkinson, B. E., 2000, Elements of Photogrammetry with Applications in GIS fourth edition, New York:The McGraw-Hill.
Zhang, Y., J., Hu, B., H., Zhang, J., Q., 2011, “Relative orientation based on multi-features”, ISPRS Journal of Photogrammetry and Remote Sensing, 66(5):700-707.
描述 碩士
國立政治大學
地政學系
105257030
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0105257030
資料類型 thesis
dc.contributor.advisor 邱式鴻zh_TW
dc.contributor.advisor Chio, Shih-Hongen_US
dc.contributor.author (Authors) 陳玠穎zh_TW
dc.contributor.author (Authors) Chen, Chieh-Yingen_US
dc.creator (作者) 陳玠穎zh_TW
dc.creator (作者) Chen, Chieh-Yingen_US
dc.date (日期) 2018en_US
dc.date.accessioned 27-Aug-2018 14:55:51 (UTC+8)-
dc.date.available 27-Aug-2018 14:55:51 (UTC+8)-
dc.date.issued (上傳時間) 27-Aug-2018 14:55:51 (UTC+8)-
dc.identifier (Other Identifiers) G0105257030en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/119592-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 地政學系zh_TW
dc.description (描述) 105257030zh_TW
dc.description.abstract (摘要) 三維建物模型中的牆面紋理敷貼可以來自空載傾斜攝影之傾斜影像,但在台灣都會區的建物密集,導致空載傾斜攝影於某些區域亦難取得靠近地面的建物影像,此可由近景攝影所拍攝之近景影像彌補,而測量車所取得之車載側拍影像正是快速獲取近景影像之來源。以車載側拍影像執行建物牆面影像敷貼時,須先以光束法平差完成影像之方位求解。而以往求解過程需依靠影像間共同的連結點,但都市區車載側拍影像中存在如招牌等直線特徵,亦可於光束法平差時作為連結線,因此本研究的主要目的即是研究當使用測量車距建物垂直距離約3m傾斜拍攝時,同一相機側拍前後兩張重疊率約60%,雙相機光軸水平夾角約100度,相鄰攝影站的雙相機側拍影像重疊率約80%時,在須滿足三維建物模型中牆面紋理敷貼(即LOD3)精度要求下,以光束法平差執行車載側拍影像定位定向時,除了探討在測區兩端各佈設一組共四個控制點,於使用單相機與雙相機車載側拍影像的最多張數和最佳張數,並分析加入連結線是否能提升精度。研究成果顯示雙相機車載側拍影像定位定向結果較佳,且雙相機車載側拍影像在符合LOD3模型精度下,測區兩端各佈設一組控制點時最多張數為70張影像,測區長約245m;而由研究結果建議最佳張數為28張影像,測區長約90m有較佳影像定位定向的結果。此外,本研究使用光束法平差執行車載側拍影像定位定向時,成果顯示加入連結線未能顯著提升精度,但加入連結線以自率光束法平差執行影像定位定向時則可些微提升定位定向的精度。zh_TW
dc.description.abstract (摘要) The source for facade texture-mapping for 3D building models can be obtained from aerial oblique images. However, the images of high building lower parts are difficult to be obtained in some areas. Close-range images can remedy such a shortcoming of aerial oblique images. Additionally, close-range images can be collected faster and more effieiently by Surveying Vechicle. However, before facade texture mapping, bundle adjustment should be implemented to orient these vehicle-based side photographic images. Generally speaking, tie points and control points as well as camera parameters are necessary in bundle adjustment. Since straight line features of, e.g. images of signboards, exist in these vehicle-based images, they can be also treated as tie lines in bundle adjustment. In this study, it is supposed that vertical distance from surveying vehicle to buildings is 3m, the overlap of adjacent images from one camera and two cameras is 60 percent and 80 percent, respectively, and the horizontal angle bwteen the optical axis between two cameras is about 100 degree. The purpose is to find out the most number and the best number of vehicle-based side photographed images in bundle adjustment on the basis of two set control points, totally four points, at both sides of test area and under the accuracy requirement of 3D LOD3 building model. The other purpose is to discuss the potential accuracy by using tie lines in bundle adjustment. The result shows that vehicle-based side photographic image orientation determination from simultaneously two cameras is better than that using images from one camera. The most number of vehicle-based side photographed images using simultaneously two cameras is 70, ca. 245m. The best number of using simultaneously two cameras is 28, ca. 90m. Although the other result shows that no accuracy improvement of vehicle-based side photographic image orientation determination with adding tie lines in bundle adjustment, the result still shows accuracy is little improved in orientation determination with adding tie lines in self-calibration bundle adjustment.en_US
dc.description.tableofcontents 謝誌 II
摘要 III
ABSTRACT IV
目錄 V
圖目錄 VII
表目錄 XII
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 論文架構 5
第二章 文獻回顧 7
第一節 車載影像應用與定位定向 7
第二節 線特徵 13
第三章 研究方法與理論基礎 18
第一節 研究方法 18
第二節 理論基礎 24
第四章 實驗成果與分析 35
第一節 研究工具 35
第二節 研究區域資料選取 37
第三節 實驗設計 41
第四節 實驗成果 51
第五章 結論與建議 95
第一節 結論 95
第二節 建議 97
參考文獻 98
附錄A RIEGL公司提供透鏡畸變差改正模式 103
附錄 B PIX4DMAPPER軟體透鏡畸變差轉換關係 104
zh_TW
dc.format.extent 12882978 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0105257030en_US
dc.subject (關鍵詞) 紋理敷貼zh_TW
dc.subject (關鍵詞) 近景攝影測量zh_TW
dc.subject (關鍵詞) 車載影像zh_TW
dc.subject (關鍵詞) 光束法平差zh_TW
dc.subject (關鍵詞) 連結線zh_TW
dc.subject (關鍵詞) Texture-mappingen_US
dc.subject (關鍵詞) Close-range photogrammetryen_US
dc.subject (關鍵詞) Vehicle-based imageen_US
dc.subject (關鍵詞) Bundle adjustmenten_US
dc.subject (關鍵詞) Tie lineen_US
dc.title (題名) 車載側拍影像定位定向之研究zh_TW
dc.title (題名) Orientation Determination of Vehicle-based Side Photographic Imagesen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 內政部國土測繪中心,2016,「104 及 105 年度發展車載移動測繪系統(MMS)作業」,內政部國土測繪中心車載移動測繪系統(MMS)作業工作總報告。
內政部,2017,「106年度三維地形圖資技術發展工作案」,成果報告。
李玉華、江凱偉、饒見有,2010,「測量車之系統率定及其效能分析」,『航測及遙測學刊』,15(3):229-242。
李玉華,2010,「車載移動式製圖系統之系統率定及其直接的裡定位之效能分析」,國立成功大學測量工程學系碩士論文:台南。
李德仁、袁修孝,2002,「解析攝影測量平差中系統誤差的補償」。頁181-183,收錄於李德仁編,『誤差處理與可靠性理論』,武漢: 武漢大學出版社。
林汝晏,2013,「航空影像控制實體於近景影像光束法區域平差控制之精度探討」,國立政治大學地政學系碩士學位論文:臺北。
林舒葦,2016,「以光束法平差提升地面移動測繪系統精度之研究」,國立成功大學測量及空間資訊學系碩士學位論文:臺南。
吳建億,2009,「使用物空間條件進行測量車相機檢定」,國立成功大學測量及空間資訊學系碩士學位論文:臺南。
彭念豪,2005,「以控制直線進行影像外方位參數求解之自動化系統」,國立臺灣大學土木工程學系碩士學位論文:臺北。
黃文利,2001,「近景攝影測量應用於三維建物模型側面影像敷貼之研究」,國立成功大學測量及空間資訊學系碩士學位論文:臺南。
趙鍵哲、彭念豪,2005,「以光達資料之控制直線求解單張像片外方位參數 之模式探討與可行性評估」,『航測及遙測學刊』,10(1):89-102。
蔡展榮、吳建億、李明軒,2010,「測量車雙相機同步攝影測量」,『地籍測量: 中華民國地籍測量學會會刊』,29(1):13-26。
蔡富安、陳良健,2010,「三維數位城市之建置與應用」,『國土資訊系統通訊』,73(4):18-30。
蔡富安、張智安、張桓、陳良健、陳杰宗,2013,「多尺度三維數位房屋模型建置」,『航測及遙測學刊』,17(4):267-283。
藍文浩,2011,「測量車前拍影像空三網形評估」,國立成功大學測量及空間資訊學系碩士學位論文:臺南。
蕭伊伶,2013,「控制影像於多時期影像方位解算之分析」,臺灣大學土木工程學研究所學位論文:臺北
Agisoft, 2016, Agisoft PhotoScan User Manual Professional Edition Version 1.2 , Russia: Agisoft LLC.
Baillard, C., Zisserman, A., 2000, “A plane sweep strategy for the 3Dreconstruction of buildings from multiple images”, International Archives of Photogrammetry and Remote Sensing, 33:56–62.
Bäumker, M., Heimes,F. J., 2001, “New calibration and computing method for direct georeferencing of image and scanner data using the position and angular data of an hybrid inertial navigation system. ” Paper presented at OEEPE Workshop Integrated Sensor Orientation, Stockholm, March.
Brown, D. C.,1968, “Advanced Methods for the Calibration of Metric Cameras”, Technical report DA-44-009-AMG-1457. FL: DBA Systems.
Brown, D. C., 1971, “Close-Range Camera Calibration”, Photogrammetric Engineering, 37(8):855-866.
Cabo, C., S. García Cortés, and C. Ordoñez., 2015, "Mobile Laser Scanner data for automatic surface detection based on line arrangement." Automation in Construction 58: 28-37.
Cavegn, S., Nebiker, S.,and Haala, N. , 2016, “A SYSTEMATIC COMPARISON OF DIRECT AND IMAGE-BASED GEOREFERENCING IN CHALLENGING URBAN AREAS”, International Archives of Photogrammetry and Remote Sensing, XLI-B1:529–536.
Choi, K., Tanathong, S ., Kim, H., and Lee, I., 2013, “Realtime Image Matching for Vision Based Car Navigation with Built-in Sensory Data”, ISPRS Annals of Remote Sensing and Spatial Information Sciences, II-3/W2:1 -6.
Drap, P., Lefèvre, J., 2016, “ An exact formula for calculating inverse radial lens distortions. ” Sensors, 16(6): 807.
Eugster, H., Huber, F., Nebiker, S., and Gisi, A., 2012, “Integrated Georeferencing of Stereo Image Sequences Captured with a Stereovision Mobile Mapping System - Approaches and Practical Results ”, International Archives of Photogrammetry and Remote Sensing, XXXIX-B1:309–314.
Gröger, G., Kolbe, T.H., Czerwinski, A., Nagel, C., 2008, “OpenGIS® City Geography Markup Language (CityGML) Encoding Standard”, Category: OpenGIS® Encoding Standard, Version:1.0.0.
Habib, A., Morgan, M., Kim, E. M., and Cheng, R. , 2004, “ Linear features in photogrammetric activities”, Paper presented at ISPRS Congress, Istanbul, Turkey, July.
Hung, C. H., Chang, W. C., and Chen, L. C., 2016, “ORIENTATION MODELING FOR AMATEUR CAMERAS BY MATCHING IMAGE LINE FEATURES AND BUILDING VECTOR DATA. ” ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B3:39–42.
Kada, M., Klinec, D., and Haala, N., 2005, “Facade Texturing for rendering 3D city models. ”, Paper presented at ASPRS Conference, Bethesda, Maryland, March 7- March 11.
Kang, Z., Zlatanova, S., and Gorte, B., 2007, “Automatic Detection of Range Variance of Facades from Vehicle- Based Image Sequence. ”, Paper presented at 5th International Symposium on Mobile Mapping Technology MMT ’07, Padua, Italy, May 29- May 30.
Kang, Z., Zlatanova, S., and Gorte, B., 2007(a), “Semi-automatic registration between vehicle-based image sequence and 2d vector map. ”, Paper presented at 7th International Geomatic Week Conference, Barcelona, Spain, February 20- February23.
Kang, Z., Zhang, Z., Zhang, Z., and Zlatanova, S., 2007(b),“Rapidly Realizing 3D Visualisation for Urban Street Based on Multi-Source Data Integration”, pp.149-196 in Geomatics Solutions for Disaster Management, edited by Li, J., Zlatanova, S.,and Fabbri, A., New York: Springer.
Koopman, M. J., Soffers, P., Kastelijns, M., Ntarladima, A. M., Ten Kate, J., Tijssen, T. P. M., and Van der Spek, S. C., 2015, Exploring Photogrammetric Point Clouds, Delft:Geomatics Synthesis Project.
Mikhail, E. M., Bethel, J. S., & McGlone, J. C., 2001, Introduction to modern photogrammetry, New York:John Wiley & Sons,Inc.
Robles-Ortega, M. D., Ortega, L. and Feito, F. R., 2013, “A new approach to create textured urban models through genetic algorithms”, International Journal of Geographical Information Science, 243:1-19.
Pix4DMapper (2017). Industry Mapping Master Mapmaking. Retrieved August 17, 2017 from Taiwan on the World Wide Web: https://pix4d.com/industry/mapping/.
Pix4DMapper (2017). How to convert the Camera Model Internal Parameters from Brown 1964/ Heikkila 1997/ Fraser 1997 to Pix4D Camera Model Definition. Retrieved August 17, 2017 from Taiwan on the World Wide Web: https://support.pix4d.com/hc/en-us/articles/203824175-How-to-convert-the-Camera-Model-Internal-Parameters-from-Brown-1964-Heikkila-1997-Fraser-1997-to-Pix4D-Camera-Model-Definition?flash_digest=82f970a13cabc0c21f9d0151c8a3c0990487efd7#gsc.tab=0.
PHOCAD, 2005, PHIDIAS Image Orientation manual Version 2.85, Germany: PHOCAD Ingenieurgesellschaft mbH.
PHOCAD(2010).PHOCAD Ingenieurgesellschaft-Software for Photogrammetry and Laser scanning. Retrieved September 1, 2000 from Taiwan on the World Wide Web: http://www.phocad.de/en/en.html.
Photometrix, 2010, Users Manual for iWitness and iWitnessPRO, Australia: Photometrix.
Schenk, T., 2004, “From point-based to feature-based aerial triangulation”, ISPRS Journal of Photogrammetry and Remote Sensing, 58:315-329.
Tell, D., 2002, Wide Baseline Matching with Applications to Visual Servoing, Unpublished doctoral dissertation, Royal Institute of Technology, Sweden.
Wolf,P. R., Dewitt, B. A., Wilkinson, B. E., 2000, Elements of Photogrammetry with Applications in GIS fourth edition, New York:The McGraw-Hill.
Zhang, Y., J., Hu, B., H., Zhang, J., Q., 2011, “Relative orientation based on multi-features”, ISPRS Journal of Photogrammetry and Remote Sensing, 66(5):700-707.
zh_TW
dc.identifier.doi (DOI) 10.6814/THE.NCCU.LE.015.2018.A05-