學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

題名 利用SLR及GPS觀測資料估計地心運動之研究
The study of using SLR and GPS observation data to estimate geocenter motion
作者 曾義傑
Cheng, Yih-Jack
貢獻者 甯方璽
Ning, Fang-Shii
曾義傑
Cheng, Yih-Jack
關鍵詞 地心運動
全球定位系統
衛星雷射測距
Geocenter motion
Global positioning system (GPS)
Satellite laser ranging (SLR)
日期 2018
上傳時間 27-Aug-2018 14:56:53 (UTC+8)
摘要 地心運動是地球質量的重新分佈和變形,而導致的固態地球形狀中心 (Center of Figure, CF)與地球質量中心(Center of Mass of the Earth System, CM)之間的偏移量。隨著空間大地測量之精度的提高和應用的要求,地心運動研究和估計之重要性與日俱增,因為它是以地球質量中心為原點的各式坐標系統的關鍵。目前地心運動皆以單一觀測技術(如SLR (Satellite Laser Ranging)或GPS(Global Positioning System))進行一階變形法或網形偏移法求解,本研究將結合SLR及GPS觀測資料,以網形偏移法進行研究,評估結合不同觀測方法數據是否可提升地心運動之求解精度。本研究使用2007年至2016年間國際GNSS服務(International GNSS Service, IGS)之GPS觀測資料及部分測站之SLR追蹤GRACE-A(Gravity Recovery and Climate Experiment-A)衛星觀測資料,以GAMIT/GLOBK和Bernese軟體進行地球表面觀測站坐標計算,再應用Helmert坐標轉換求取地心運動量,並利用含有線性項和球諧項之函數進行資料擬合,最後探討地心運動模型之精度。由研究成果顯示2007年至2016年間地心運動於X,Y和Z分量之振幅分別為2.6mm±0.2mm,4.1mm±0.2mm和5.6mm±0.3mm。其年相位於X,Y和Z分量分別為72°,330°和145°,與目前僅用一種觀測技術求解之精度比較有顯著性之提升。
Geocenter motion describes the difference of Center of Figure (CF) respect to Center of Mass of the Earth system (CM) due to the mass re-distribution and deformation of the Earth system. This is a factor that cannot be ignored in the maintenance of the high-precision terrestrial reference frame. As precision requirements and application demands in space geodesy increase, research on estimation of the geocenter motion become increasingly important as the key point to realize a reference frame with its origin fixed to center of mass of the Earth system.
In this study, GPS (Global Positioning System) observation data from IGS (International GNSS Service) and SLR (Satellite Laser Ranging) tracking data in the period of 2007 to 2016 are applied to estimate the coordinates of IGS sites on Earth’s surface by using the GAMIT/GLOBK and Bernese software. Then, the Helmert transformation model is used to acquire seven parameters between the ITRF (International Terrestrial Reference Frame) reference frame and the CM reference frame. There are three parameters of them are related to the shift in three axes, which are the results of the geocenter motion. Afterwards, the geocenter motion time series are applied with linear fitting method in order to obtain the amplitudes and phases along three axes of geocenter motion.
The annual amplitude of X-, Y-, and Z-components between the years 2007 and 2016 are 2.6±0.2mm, 4.1±0.2mm, and 5.6±0.3mm respectively. The annual phase of X-, Y-, and Z-components are 72°, 330°, and 145° respectively. The accuracy of this study is significant improvement comparing to just using GPS or SLR technique only.
參考文獻 一、中文參考文獻
周旭華、高布錫,2000,「地心的變化及其原因」,『地球物理學報』,43(2):160-165。
謝蘇銳、李斐、鄢建國,2014,「基於空間大地測量與地球物理方法的地心運動研究與監測進展」,『地球物理學進展』,29(1):15-24。
朱文耀、宋淑麗,2010,「國際地球參考框架 (ITRF) 的原點和無整體旋轉」,『天文學進展』,28(4):321-332。
趙德軍、李潭欣、李婧、陳永祥,2015,「DORIS, GPS 和 SLR 空間大地測量技術匯出的地心運動規律」,『測繪工程』,2015(12):21-24。
魏娜、施闖、劉經南,2011,「利用GPS資料反演地心運動」,『武漢大學學報資訊科學版』,36(4):441-445。
陳盈樺,2009,「利用測高衛星、重力衛星、NCEP氣候模型估計地心與 C20 變動」,成功大學測量及空間資訊學系碩士論文:台南。
二、外文參考文獻
Altamimi, Z., Collilieux, X., & Métivier, L., 2011, “ITRF2008: an improved solution of the international terrestrial reference frame”, Journal of Geodesy, 85(8): 457-473.
Altamimi, Z., Collilieux, X., Legrand, J., Garayt, B., and Boucher, C., 2007, “ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters”, Journal of Geophysical Research: Solid Earth, 112(B9).
Altamimi, Z., Sillard, P., & Boucher, C., 2002, “ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications”, Journal of Geophysical Research: Solid Earth, 107(B10).
Altamimi, Z., Rebischung, P., Métivier, L., & Collilieux, X., 2016, “ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions”, Journal of Geophysical Research: Solid Earth, 121(8): 6109-6131.
Argus, D. F., 2012, “Uncertainty in the velocity between the mass center and surface of Earth”, Journal of Geophysical Research: Solid Earth, 117(B10).
Argus, D. F., Peltier, W. R., and Watkins, M. M., 1999, “Glacial isostatic adjustment observed using very long baseline interferometry and satellite laser ranging geodesy”, Journal of Geophysical Research: Solid Earth, 104(B12): 29077-29093.
Baur, O., 2012, “On the computation of mass-change trends from GRACE gravity field time-series”, Journal of Geodynamics, 61: 120-128.
Beutler, G., Bock, H., Brockmann, E., Dach, R., Fridez, P., Gurtner, W., Hugentobler, U., Johnson, J., Mervart, L., Rothacher, M., Schaer, S., Springer, T., and Weber, R., 2001, “Bernese GPS Software Version 4.2, edited by U. Hugentobler, S. Schaer, and P. Fridez, Astronomical Institute, University of Berne”.
Bouille, F., Cazenave, A., Lemoine, J. M., & Crétaux, J. F., 2000, “Geocentre motion from the DORIS space system and laser data to the Lageos satellites: Comparison with surface loading data”, Geophysical Journal International, 143(1): 71-82.
Blewitt, G., 1989, “Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km”, Journal of Geophysical Research: Solid Earth , 94(B8): 10187-10203.
Blewitt, G., 2003, “Self‐consistency in reference frames, geocenter definition, and surface loading of the solid Earth”, Journal of geophysical research: solid earth, 108(B2).
Blewitt, G., & Clarke, P. (2003). Inversion of Earth`s changing shape to weigh sea level in static equilibrium with surface mass redistribution. Journal of Geophysical Research: Solid Earth, 108(B6).
Blewitt, G., Lavallée, D., Clarke, P., & Nurutdinov, K. (2001). A new global mode of Earth deformation: Seasonal cycle detected. Science, 294(5550), 2342-2345.
Collilieux, X., & Wöppelmann, G. (2011). Global sea-level rise and its relation to the terrestrial reference frame. Journal of Geodesy, 85(1), 9-22.
Collilieux, X., Altamimi, Z., Ray, J., van Dam, T., & Wu, X. (2009). Effect of the satellite laser ranging network distribution on geocenter motion estimation. Journal of Geophysical Research: Solid Earth, 114(B4).
Collilieux, X., Altamimi, Z., Coulot, D., van Dam, T., & Ray, J. (2010). Impact of loading effects on determination of the International Terrestrial Reference Frame. Advances in space research, 45(1), 144-154.
Crétaux, J. F., Soudarin, L., Davidson, F. J., Gennero, M. C., Bergé‐Nguyen, M., & Cazenave, A. (2002). Seasonal and interannual geocenter motion from SLR and DORIS measurements: Comparison with surface loading data. Journal of geophysical research: solid earth, 107(B12).
Chambers, D. P. (2006). Observing seasonal steric sea level variations with GRACE and satellite altimetry. Journal of Geophysical Research: Oceans, 111(C3).
Davies, P., and G. Blewitt (2000), Methodology for global geodetic time series estimation: A new tool for geodynamics, J. Geophys. Res., 105(B5), 11,083 – 11,100.
De Viron, O., Schwarzbaum, G., Lott, F., & Dehant, V. (2005). Diurnal and subdiurnal effects of the atmosphere on the Earth rotation and geocenter motion. Journal of Geophysical Research: Solid Earth, 110(B11).
Dong, D., Bock, Y. (1989). “Global Positioning System network analysis with phase ambiguity resolution applied to crustal deformation studies in California.”,Journal of Geophysical Research: Solid Earth , 94(B4):3949-3966.
Dong, D., Dickey, J. O., Chao, Y., & Cheng, M. K. (1997). Geocenter variations caused by atmosphere, ocean and surface ground water. Geophysical Research Letters, 24(15), 1867-1870.
Dong, D., Qu, W., Fang, P., & Peng, D. (2014). Non-linearity of geocentre motion and its impact on the origin of the terrestrial reference frame. Geophysical journal international, 198(2), 1071-1080.
Dong, D., Yunck, T., & Heflin, M. (2003). Origin of the international terrestrial reference frame. Journal of geophysical research: solid earth, 108(B4).
Feissel-Vernier, M., Le Bail, K., Berio, P., Coulot, D., Ramillien, G., & Valette, J. J. (2006). Geocentre motion measured with DORIS and SLR, and predicted by geophysical models. Journal of Geodesy, 80(8-11), 637-648.
Fritsche, M., Dietrich, R., Rülke, A., Rothacher, M., & Steigenberger, P. (2010). Low-degree earth deformation from reprocessed GPS observations. GPS solutions, 14(2), 165-175.
Greff-Lefftz, M., & Legros, H. (1997). Some remarks about the degree-one deformation of the Earth. Geophysical Journal International, 131(3), 699-723.
Greff‐Lefftz, M. (2000). Secular variation of the geocenter. Journal of Geophysical Research: Solid Earth, 105(B11), 25685-25692.
Greff-Lefftz, M., & Legros, H. (2007). Fluid core dynamics and degree-one deformations: Slichter mode and geocenter motions. Physics of the Earth and Planetary Interiors, 161(3), 150-160.
Greff-Lefftz, M., Métivier, L., & Besse, J. (2010). Dynamic mantle density heterogeneities and global geodetic observables. Geophysical Journal International, 180(3), 1080-1094.
Gutzwiller, M. C. (1998). Moon-Earth-Sun: The oldest three-body problem. Reviews of Modern Physics, 70(2), 589.
Heflin, M., Bertiger, W., Blewitt, G., Freedman, A., Hurst, K., Lichten, S., ... & Zumberge, J. (1992). Global geodesy using GPS without fiducial sites. Geophysical Research Letters, 19(2), 131-134.
Herring, T. A., Floyd, M. A., King, R. W., and McClusky, S. C. (2015a). GLOBK Reference Manual, Global Kalman filter VLBI and GPS analysis program. , Cambridge:MIT Press.
Herring, T. A., Floyd, M. A., King, R. W., and McClusky, S. C. (2015b). GAMIT Reference Manual, GPS Analysis at MIT. , Cambridge:MIT Press.
Herring, T.A., King, R.W., and McClusky, S.C. (2010). Introduction to Gamit/Globk ., Cambridge:MIT Press.
King, M. A., Altamimi, Z., Boehm, J., Bos, M., Dach, R., Elosegui, P., Fund, F., Hernández-Pajares, M., Lavalle, D., Cerveira, P. J. M., Penna, N., Riva, R. E. M., Steigenberger, P., Dam, T. V., Vittuari, L., Williams, S., and Willis, P. (2010). Improved constraints on models of glacial isostatic adjustment: a review of the contribution of ground-based geodetic observations. Surveys in geophysics, 31(5), 465-507.
Krásná, H., Böhm, J., & Schuh, H. (2013). Free core nutation observed by VLBI. Astronomy & Astrophysics, 555, A29.
Klemann, V., & Martinec, Z. (2011). Contribution of glacial-isostatic adjustment to the geocenter motion. Tectonophysics, 511(3), 99-108.
Kuzin, S. P., Tatevian, S. K., Valeev, S. G., & Fashutdinova, V. A. (2010). Studies of the geocenter motion using 16-years DORIS data. Advances in space research, 46(10), 1292-1298.
Lavallée, D., & Blewitt, G. (2002). Degree‐1 Earth deformation from very long baseline interferometry measurements. Geophysical research letters, 29(20).
Lavallée, D. A., van Dam, T., Blewitt, G., & Clarke, P. J. (2006). Geocenter motions from GPS: A unified observation model. Journal of geophysical research: solid earth, 111(B5).
Leuliette, E. W., & Miller, L. (2009). Closing the sea level rise budget with altimetry, Argo, and GRACE. Geophysical Research Letters, 36(4).
Marini, J. W., & Murray Jr, C. W. (1973). Correction of laser range tracking data for atmospheric refraction at elevations above 10 degrees.
Mendes, V. B., & Pavlis, E. C. (2004). High‐accuracy zenith delay prediction at optical wavelengths. Geophysical Research Letters, 31(14).
Métivier, L., Greff-Lefftz, M., & Altamimi, Z. (2010). On secular geocenter motion: the impact of climate changes. Earth and Planetary Science Letters, 296(3), 360-366.
Métivier, L., Greff-Lefftz, M., & Altamimi, Z. (2011). Erratum to “On secular geocenter motion: the impact of climate changes”. Earth and Planetary Science Letters, 306(1), 136.
Métivier, L., Collilieux, X., & Altamimi, Z. (2012). ITRF2008 contribution to glacial isostatic adjustment and recent ice melting assessment. Geophysical Research Letters, 39(1).
Morel, L., & Willis, P. (2005). Terrestrial reference frame effects on global sea level rise determination from TOPEX/Poseidon altimetric data. Advances in Space Research, 36(3), 358-368.
Petovello, M. (2013). Differences between Least squares and Kalman filtering GNSS Filtering options. Inside GNSS.
Peltier, W. R. (1994). Ice age paleotopography. SCIENCE, 265(5169), 195-201.
Peltier, W. R. (2004). Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci., 32, 111-149.
Petit, G., & Luzum, B. (2010). IERS conventions (2010) (No. IERS-TN-36). BUREAU INTERNATIONAL DES POIDS ET MESURES SEVRES (FRANCE).
Quinn, K. J., & Ponte, R. M. (2010). Uncertainty in ocean mass trends from GRACE. Geophysical Journal International, 181(2), 762-768.
Rietbroek, R., Fritsche, M., Brunnabend, S.E., et al., 2012. Global surface mass from a new combination of GRACE, modelled OBP and reprocessed GPS data. J. Geodyn. 64–71, doi:10.1016/j. jog.2011.02.003.
Rodell, M., Chao, B. F., Au, A. Y., Kimball, J. S., & McDonald, K. C. (2005). Global biomass variation and its geodynamic effects: 1982–98. Earth Interactions, 9(2), 1-19.
Swenson, S., Chambers, D., & Wahr, J. (2008). Estimating geocenter variations from a combination of GRACE and ocean model output. Journal of Geophysical Research: Solid Earth, 113(B8).
Smylie, D. E., Szeto, A. M. K., & Rochester, M. G. (1984). The dynamics of the Earth`s inner and outer cores. Reports on Progress in Physics, 47(7), 855.
Trupin, A. S., Meier, M. F., & Wahr, J. M. (1992). Effect of melting glaciers on the Earth`s rotation and gravitational field: 1965–1984. Geophysical Journal International, 108(1), 1-15.
Watkins, M. M., & Eanes, R. J. (1997). Observations of tidally coherent diurnal and semidiurnal variations in the geocenter. Geophysical research letters, 24(17), 2231-2234.
Wu, X., Heflin, M. B., Ivins, E. R., & Fukumori, I. (2006). Seasonal and interannual global surface mass variations from multisatellite geodetic data. Journal of Geophysical Research: Solid Earth, 111(B9).
Wu, X., Ray, J., & van Dam, T. (2012). Geocenter motion and its geodetic and geophysical implications. Journal of Geodynamics, 58, 44-61.
Wu, X., Ray, J., & van Dam, T. (2012). Geocenter motion and its geodetic and geophysical implications. Journal of Geodynamics, 58, 44-61.
Yu, N., Cheng, P., Cheng, Y., Wen, H., Kuang, K., & Cao, X. (2017). The geocentre inversion based on the global climate models and GPS site displacements. Survey Review, 1-9.
Zhang, Z. P., Li, R. D., Yang, F. M., & Fu, J. F. (2005). Two-color satellite laser ranging. Progress In Astronomy, 23, 99-109.
五、 網頁參考文獻
張嘉強. (2014). 坐標轉換. Retrieved September 22, 2017 from UCH on the World Wide Web: http://w3.uch.edu.tw/ccchang50/crd_trsnafer.pdf
ILRS. (2017). International Laser Ranging Service: Maps of Stations. Retrieved October 22, 2017 from IERS on the World Wide Web: https://ilrs.cddis.eosdis.nasa.gov/network/stations/index.html
NASA. (2018). GRACE Orbital Configuration. Retrieved April 18, 2018 from GRACE satellite on the World Wide Web: http://www2.csr.utexas.edu/grace/operations/configuration.html
NSPO. (2018). 福爾摩沙衛星七號-計畫簡介. Retrieved April 18, 2018 from FORMOSAT-7 program desctiption on the World Wide Web: http://www2.csr.utexas.edu/grace/operations/configuration.html
Miller, J. J., LaBreque, J., & Oria, A. (2013). Expert advice: Laser reflectors to ride on board GPS III. Retrieved October 22, 2017 from GPS World on the World Wide Web: http://gpsworld.com/expert-advice-laser-reflectors-to-ride-on-board-gps-iii
The SEDRIS Organization. (2009). Information technology - Spatial Reference Model (SRM). Retrieved October 22, 2017 from Sedris standards on the World Wide Web: http://standards.sedris.org/18026/text/ISOIEC_18026E_RD_ORM.HTM
四、參考書
林惠玲、陳正倉. (2011).『應用統計學』四版修訂版,臺北:雙葉書廊有限公司。
Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2007). GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more. Springer Science & Business Media.
Seeber, G. (2003). Satellite geodesy: foundations, methods, and applications. Walter de gruyter.
Van Sickle, J. (2008). GPS for land surveyors. CRC Press.
描述 碩士
國立政治大學
地政學系
105257033
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0105257033
資料類型 thesis
dc.contributor.advisor 甯方璽zh_TW
dc.contributor.advisor Ning, Fang-Shiien_US
dc.contributor.author (Authors) 曾義傑zh_TW
dc.contributor.author (Authors) Cheng, Yih-Jacken_US
dc.creator (作者) 曾義傑zh_TW
dc.creator (作者) Cheng, Yih-Jacken_US
dc.date (日期) 2018en_US
dc.date.accessioned 27-Aug-2018 14:56:53 (UTC+8)-
dc.date.available 27-Aug-2018 14:56:53 (UTC+8)-
dc.date.issued (上傳時間) 27-Aug-2018 14:56:53 (UTC+8)-
dc.identifier (Other Identifiers) G0105257033en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/119594-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 地政學系zh_TW
dc.description (描述) 105257033zh_TW
dc.description.abstract (摘要) 地心運動是地球質量的重新分佈和變形,而導致的固態地球形狀中心 (Center of Figure, CF)與地球質量中心(Center of Mass of the Earth System, CM)之間的偏移量。隨著空間大地測量之精度的提高和應用的要求,地心運動研究和估計之重要性與日俱增,因為它是以地球質量中心為原點的各式坐標系統的關鍵。目前地心運動皆以單一觀測技術(如SLR (Satellite Laser Ranging)或GPS(Global Positioning System))進行一階變形法或網形偏移法求解,本研究將結合SLR及GPS觀測資料,以網形偏移法進行研究,評估結合不同觀測方法數據是否可提升地心運動之求解精度。本研究使用2007年至2016年間國際GNSS服務(International GNSS Service, IGS)之GPS觀測資料及部分測站之SLR追蹤GRACE-A(Gravity Recovery and Climate Experiment-A)衛星觀測資料,以GAMIT/GLOBK和Bernese軟體進行地球表面觀測站坐標計算,再應用Helmert坐標轉換求取地心運動量,並利用含有線性項和球諧項之函數進行資料擬合,最後探討地心運動模型之精度。由研究成果顯示2007年至2016年間地心運動於X,Y和Z分量之振幅分別為2.6mm±0.2mm,4.1mm±0.2mm和5.6mm±0.3mm。其年相位於X,Y和Z分量分別為72°,330°和145°,與目前僅用一種觀測技術求解之精度比較有顯著性之提升。zh_TW
dc.description.abstract (摘要) Geocenter motion describes the difference of Center of Figure (CF) respect to Center of Mass of the Earth system (CM) due to the mass re-distribution and deformation of the Earth system. This is a factor that cannot be ignored in the maintenance of the high-precision terrestrial reference frame. As precision requirements and application demands in space geodesy increase, research on estimation of the geocenter motion become increasingly important as the key point to realize a reference frame with its origin fixed to center of mass of the Earth system.
In this study, GPS (Global Positioning System) observation data from IGS (International GNSS Service) and SLR (Satellite Laser Ranging) tracking data in the period of 2007 to 2016 are applied to estimate the coordinates of IGS sites on Earth’s surface by using the GAMIT/GLOBK and Bernese software. Then, the Helmert transformation model is used to acquire seven parameters between the ITRF (International Terrestrial Reference Frame) reference frame and the CM reference frame. There are three parameters of them are related to the shift in three axes, which are the results of the geocenter motion. Afterwards, the geocenter motion time series are applied with linear fitting method in order to obtain the amplitudes and phases along three axes of geocenter motion.
The annual amplitude of X-, Y-, and Z-components between the years 2007 and 2016 are 2.6±0.2mm, 4.1±0.2mm, and 5.6±0.3mm respectively. The annual phase of X-, Y-, and Z-components are 72°, 330°, and 145° respectively. The accuracy of this study is significant improvement comparing to just using GPS or SLR technique only.
en_US
dc.description.tableofcontents 第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 論文架構 5
第二章 文獻回顧 6
第一節 地心運動 6
一、 前言 6
二、 物理機制 8
三、 對空間大地測量與地球物理學的影響 11
四、 監測方法 13
第二節 衛星雷射測距 14
一、 系統介紹 14
二、 應用部分 15
第三章 研究方法與理論基礎 17
第一節 實驗流程 18
第二節 研究資料及軟體介紹 21
一、 資料來源 21
二、 軟體介紹 23
第三節 SLR觀測量處理 26
一、 基礎理論 26
二、 坐標反算 29
第四節 GPS觀測資料處理 33
一、 雙差觀測量計算 35
二、 電離層延遲改正 37
三、 法方程式解算 41
第五節 實驗方法 43
第六節 坐標轉換 46
第七節 資料擬合 48
第四章 實驗成果與分析 49
第一節 地心運動時間序列 49
一、 僅用GPS測站計算之成果 49
二、 僅用SLR測站計算之成果 52
三、 合併GPS及SLR測站計算之成果 56
第二節 地心運動資料擬合成果 59
第五章 結論與建議 69
第一節 結論 69
一、 僅用GPS測站之研究成果 69
二、 僅用SLR測站之研究成果 69
三、 合併GPS及SLR測站計算之成果 70
四、 地心運動模型擬合成果 70
第二節 建議 71
參考文獻 73
附錄 82
zh_TW
dc.format.extent 8175869 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0105257033en_US
dc.subject (關鍵詞) 地心運動zh_TW
dc.subject (關鍵詞) 全球定位系統zh_TW
dc.subject (關鍵詞) 衛星雷射測距zh_TW
dc.subject (關鍵詞) Geocenter motionen_US
dc.subject (關鍵詞) Global positioning system (GPS)en_US
dc.subject (關鍵詞) Satellite laser ranging (SLR)en_US
dc.title (題名) 利用SLR及GPS觀測資料估計地心運動之研究zh_TW
dc.title (題名) The study of using SLR and GPS observation data to estimate geocenter motionen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 一、中文參考文獻
周旭華、高布錫,2000,「地心的變化及其原因」,『地球物理學報』,43(2):160-165。
謝蘇銳、李斐、鄢建國,2014,「基於空間大地測量與地球物理方法的地心運動研究與監測進展」,『地球物理學進展』,29(1):15-24。
朱文耀、宋淑麗,2010,「國際地球參考框架 (ITRF) 的原點和無整體旋轉」,『天文學進展』,28(4):321-332。
趙德軍、李潭欣、李婧、陳永祥,2015,「DORIS, GPS 和 SLR 空間大地測量技術匯出的地心運動規律」,『測繪工程』,2015(12):21-24。
魏娜、施闖、劉經南,2011,「利用GPS資料反演地心運動」,『武漢大學學報資訊科學版』,36(4):441-445。
陳盈樺,2009,「利用測高衛星、重力衛星、NCEP氣候模型估計地心與 C20 變動」,成功大學測量及空間資訊學系碩士論文:台南。
二、外文參考文獻
Altamimi, Z., Collilieux, X., & Métivier, L., 2011, “ITRF2008: an improved solution of the international terrestrial reference frame”, Journal of Geodesy, 85(8): 457-473.
Altamimi, Z., Collilieux, X., Legrand, J., Garayt, B., and Boucher, C., 2007, “ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters”, Journal of Geophysical Research: Solid Earth, 112(B9).
Altamimi, Z., Sillard, P., & Boucher, C., 2002, “ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications”, Journal of Geophysical Research: Solid Earth, 107(B10).
Altamimi, Z., Rebischung, P., Métivier, L., & Collilieux, X., 2016, “ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions”, Journal of Geophysical Research: Solid Earth, 121(8): 6109-6131.
Argus, D. F., 2012, “Uncertainty in the velocity between the mass center and surface of Earth”, Journal of Geophysical Research: Solid Earth, 117(B10).
Argus, D. F., Peltier, W. R., and Watkins, M. M., 1999, “Glacial isostatic adjustment observed using very long baseline interferometry and satellite laser ranging geodesy”, Journal of Geophysical Research: Solid Earth, 104(B12): 29077-29093.
Baur, O., 2012, “On the computation of mass-change trends from GRACE gravity field time-series”, Journal of Geodynamics, 61: 120-128.
Beutler, G., Bock, H., Brockmann, E., Dach, R., Fridez, P., Gurtner, W., Hugentobler, U., Johnson, J., Mervart, L., Rothacher, M., Schaer, S., Springer, T., and Weber, R., 2001, “Bernese GPS Software Version 4.2, edited by U. Hugentobler, S. Schaer, and P. Fridez, Astronomical Institute, University of Berne”.
Bouille, F., Cazenave, A., Lemoine, J. M., & Crétaux, J. F., 2000, “Geocentre motion from the DORIS space system and laser data to the Lageos satellites: Comparison with surface loading data”, Geophysical Journal International, 143(1): 71-82.
Blewitt, G., 1989, “Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km”, Journal of Geophysical Research: Solid Earth , 94(B8): 10187-10203.
Blewitt, G., 2003, “Self‐consistency in reference frames, geocenter definition, and surface loading of the solid Earth”, Journal of geophysical research: solid earth, 108(B2).
Blewitt, G., & Clarke, P. (2003). Inversion of Earth`s changing shape to weigh sea level in static equilibrium with surface mass redistribution. Journal of Geophysical Research: Solid Earth, 108(B6).
Blewitt, G., Lavallée, D., Clarke, P., & Nurutdinov, K. (2001). A new global mode of Earth deformation: Seasonal cycle detected. Science, 294(5550), 2342-2345.
Collilieux, X., & Wöppelmann, G. (2011). Global sea-level rise and its relation to the terrestrial reference frame. Journal of Geodesy, 85(1), 9-22.
Collilieux, X., Altamimi, Z., Ray, J., van Dam, T., & Wu, X. (2009). Effect of the satellite laser ranging network distribution on geocenter motion estimation. Journal of Geophysical Research: Solid Earth, 114(B4).
Collilieux, X., Altamimi, Z., Coulot, D., van Dam, T., & Ray, J. (2010). Impact of loading effects on determination of the International Terrestrial Reference Frame. Advances in space research, 45(1), 144-154.
Crétaux, J. F., Soudarin, L., Davidson, F. J., Gennero, M. C., Bergé‐Nguyen, M., & Cazenave, A. (2002). Seasonal and interannual geocenter motion from SLR and DORIS measurements: Comparison with surface loading data. Journal of geophysical research: solid earth, 107(B12).
Chambers, D. P. (2006). Observing seasonal steric sea level variations with GRACE and satellite altimetry. Journal of Geophysical Research: Oceans, 111(C3).
Davies, P., and G. Blewitt (2000), Methodology for global geodetic time series estimation: A new tool for geodynamics, J. Geophys. Res., 105(B5), 11,083 – 11,100.
De Viron, O., Schwarzbaum, G., Lott, F., & Dehant, V. (2005). Diurnal and subdiurnal effects of the atmosphere on the Earth rotation and geocenter motion. Journal of Geophysical Research: Solid Earth, 110(B11).
Dong, D., Bock, Y. (1989). “Global Positioning System network analysis with phase ambiguity resolution applied to crustal deformation studies in California.”,Journal of Geophysical Research: Solid Earth , 94(B4):3949-3966.
Dong, D., Dickey, J. O., Chao, Y., & Cheng, M. K. (1997). Geocenter variations caused by atmosphere, ocean and surface ground water. Geophysical Research Letters, 24(15), 1867-1870.
Dong, D., Qu, W., Fang, P., & Peng, D. (2014). Non-linearity of geocentre motion and its impact on the origin of the terrestrial reference frame. Geophysical journal international, 198(2), 1071-1080.
Dong, D., Yunck, T., & Heflin, M. (2003). Origin of the international terrestrial reference frame. Journal of geophysical research: solid earth, 108(B4).
Feissel-Vernier, M., Le Bail, K., Berio, P., Coulot, D., Ramillien, G., & Valette, J. J. (2006). Geocentre motion measured with DORIS and SLR, and predicted by geophysical models. Journal of Geodesy, 80(8-11), 637-648.
Fritsche, M., Dietrich, R., Rülke, A., Rothacher, M., & Steigenberger, P. (2010). Low-degree earth deformation from reprocessed GPS observations. GPS solutions, 14(2), 165-175.
Greff-Lefftz, M., & Legros, H. (1997). Some remarks about the degree-one deformation of the Earth. Geophysical Journal International, 131(3), 699-723.
Greff‐Lefftz, M. (2000). Secular variation of the geocenter. Journal of Geophysical Research: Solid Earth, 105(B11), 25685-25692.
Greff-Lefftz, M., & Legros, H. (2007). Fluid core dynamics and degree-one deformations: Slichter mode and geocenter motions. Physics of the Earth and Planetary Interiors, 161(3), 150-160.
Greff-Lefftz, M., Métivier, L., & Besse, J. (2010). Dynamic mantle density heterogeneities and global geodetic observables. Geophysical Journal International, 180(3), 1080-1094.
Gutzwiller, M. C. (1998). Moon-Earth-Sun: The oldest three-body problem. Reviews of Modern Physics, 70(2), 589.
Heflin, M., Bertiger, W., Blewitt, G., Freedman, A., Hurst, K., Lichten, S., ... & Zumberge, J. (1992). Global geodesy using GPS without fiducial sites. Geophysical Research Letters, 19(2), 131-134.
Herring, T. A., Floyd, M. A., King, R. W., and McClusky, S. C. (2015a). GLOBK Reference Manual, Global Kalman filter VLBI and GPS analysis program. , Cambridge:MIT Press.
Herring, T. A., Floyd, M. A., King, R. W., and McClusky, S. C. (2015b). GAMIT Reference Manual, GPS Analysis at MIT. , Cambridge:MIT Press.
Herring, T.A., King, R.W., and McClusky, S.C. (2010). Introduction to Gamit/Globk ., Cambridge:MIT Press.
King, M. A., Altamimi, Z., Boehm, J., Bos, M., Dach, R., Elosegui, P., Fund, F., Hernández-Pajares, M., Lavalle, D., Cerveira, P. J. M., Penna, N., Riva, R. E. M., Steigenberger, P., Dam, T. V., Vittuari, L., Williams, S., and Willis, P. (2010). Improved constraints on models of glacial isostatic adjustment: a review of the contribution of ground-based geodetic observations. Surveys in geophysics, 31(5), 465-507.
Krásná, H., Böhm, J., & Schuh, H. (2013). Free core nutation observed by VLBI. Astronomy & Astrophysics, 555, A29.
Klemann, V., & Martinec, Z. (2011). Contribution of glacial-isostatic adjustment to the geocenter motion. Tectonophysics, 511(3), 99-108.
Kuzin, S. P., Tatevian, S. K., Valeev, S. G., & Fashutdinova, V. A. (2010). Studies of the geocenter motion using 16-years DORIS data. Advances in space research, 46(10), 1292-1298.
Lavallée, D., & Blewitt, G. (2002). Degree‐1 Earth deformation from very long baseline interferometry measurements. Geophysical research letters, 29(20).
Lavallée, D. A., van Dam, T., Blewitt, G., & Clarke, P. J. (2006). Geocenter motions from GPS: A unified observation model. Journal of geophysical research: solid earth, 111(B5).
Leuliette, E. W., & Miller, L. (2009). Closing the sea level rise budget with altimetry, Argo, and GRACE. Geophysical Research Letters, 36(4).
Marini, J. W., & Murray Jr, C. W. (1973). Correction of laser range tracking data for atmospheric refraction at elevations above 10 degrees.
Mendes, V. B., & Pavlis, E. C. (2004). High‐accuracy zenith delay prediction at optical wavelengths. Geophysical Research Letters, 31(14).
Métivier, L., Greff-Lefftz, M., & Altamimi, Z. (2010). On secular geocenter motion: the impact of climate changes. Earth and Planetary Science Letters, 296(3), 360-366.
Métivier, L., Greff-Lefftz, M., & Altamimi, Z. (2011). Erratum to “On secular geocenter motion: the impact of climate changes”. Earth and Planetary Science Letters, 306(1), 136.
Métivier, L., Collilieux, X., & Altamimi, Z. (2012). ITRF2008 contribution to glacial isostatic adjustment and recent ice melting assessment. Geophysical Research Letters, 39(1).
Morel, L., & Willis, P. (2005). Terrestrial reference frame effects on global sea level rise determination from TOPEX/Poseidon altimetric data. Advances in Space Research, 36(3), 358-368.
Petovello, M. (2013). Differences between Least squares and Kalman filtering GNSS Filtering options. Inside GNSS.
Peltier, W. R. (1994). Ice age paleotopography. SCIENCE, 265(5169), 195-201.
Peltier, W. R. (2004). Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci., 32, 111-149.
Petit, G., & Luzum, B. (2010). IERS conventions (2010) (No. IERS-TN-36). BUREAU INTERNATIONAL DES POIDS ET MESURES SEVRES (FRANCE).
Quinn, K. J., & Ponte, R. M. (2010). Uncertainty in ocean mass trends from GRACE. Geophysical Journal International, 181(2), 762-768.
Rietbroek, R., Fritsche, M., Brunnabend, S.E., et al., 2012. Global surface mass from a new combination of GRACE, modelled OBP and reprocessed GPS data. J. Geodyn. 64–71, doi:10.1016/j. jog.2011.02.003.
Rodell, M., Chao, B. F., Au, A. Y., Kimball, J. S., & McDonald, K. C. (2005). Global biomass variation and its geodynamic effects: 1982–98. Earth Interactions, 9(2), 1-19.
Swenson, S., Chambers, D., & Wahr, J. (2008). Estimating geocenter variations from a combination of GRACE and ocean model output. Journal of Geophysical Research: Solid Earth, 113(B8).
Smylie, D. E., Szeto, A. M. K., & Rochester, M. G. (1984). The dynamics of the Earth`s inner and outer cores. Reports on Progress in Physics, 47(7), 855.
Trupin, A. S., Meier, M. F., & Wahr, J. M. (1992). Effect of melting glaciers on the Earth`s rotation and gravitational field: 1965–1984. Geophysical Journal International, 108(1), 1-15.
Watkins, M. M., & Eanes, R. J. (1997). Observations of tidally coherent diurnal and semidiurnal variations in the geocenter. Geophysical research letters, 24(17), 2231-2234.
Wu, X., Heflin, M. B., Ivins, E. R., & Fukumori, I. (2006). Seasonal and interannual global surface mass variations from multisatellite geodetic data. Journal of Geophysical Research: Solid Earth, 111(B9).
Wu, X., Ray, J., & van Dam, T. (2012). Geocenter motion and its geodetic and geophysical implications. Journal of Geodynamics, 58, 44-61.
Wu, X., Ray, J., & van Dam, T. (2012). Geocenter motion and its geodetic and geophysical implications. Journal of Geodynamics, 58, 44-61.
Yu, N., Cheng, P., Cheng, Y., Wen, H., Kuang, K., & Cao, X. (2017). The geocentre inversion based on the global climate models and GPS site displacements. Survey Review, 1-9.
Zhang, Z. P., Li, R. D., Yang, F. M., & Fu, J. F. (2005). Two-color satellite laser ranging. Progress In Astronomy, 23, 99-109.
五、 網頁參考文獻
張嘉強. (2014). 坐標轉換. Retrieved September 22, 2017 from UCH on the World Wide Web: http://w3.uch.edu.tw/ccchang50/crd_trsnafer.pdf
ILRS. (2017). International Laser Ranging Service: Maps of Stations. Retrieved October 22, 2017 from IERS on the World Wide Web: https://ilrs.cddis.eosdis.nasa.gov/network/stations/index.html
NASA. (2018). GRACE Orbital Configuration. Retrieved April 18, 2018 from GRACE satellite on the World Wide Web: http://www2.csr.utexas.edu/grace/operations/configuration.html
NSPO. (2018). 福爾摩沙衛星七號-計畫簡介. Retrieved April 18, 2018 from FORMOSAT-7 program desctiption on the World Wide Web: http://www2.csr.utexas.edu/grace/operations/configuration.html
Miller, J. J., LaBreque, J., & Oria, A. (2013). Expert advice: Laser reflectors to ride on board GPS III. Retrieved October 22, 2017 from GPS World on the World Wide Web: http://gpsworld.com/expert-advice-laser-reflectors-to-ride-on-board-gps-iii
The SEDRIS Organization. (2009). Information technology - Spatial Reference Model (SRM). Retrieved October 22, 2017 from Sedris standards on the World Wide Web: http://standards.sedris.org/18026/text/ISOIEC_18026E_RD_ORM.HTM
四、參考書
林惠玲、陳正倉. (2011).『應用統計學』四版修訂版,臺北:雙葉書廊有限公司。
Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2007). GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more. Springer Science & Business Media.
Seeber, G. (2003). Satellite geodesy: foundations, methods, and applications. Walter de gruyter.
Van Sickle, J. (2008). GPS for land surveyors. CRC Press.
zh_TW
dc.identifier.doi (DOI) 10.6814/THE.NCCU.LE.017.2018.A05-