Publications-Periodical Articles

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 Some remarks on the indicatrix of invariant metric on convex domains
作者 陳天進
Chen, Ten Ging
貢獻者 應數系
日期 1989-03
上傳時間 25-Sep-2018 16:21:46 (UTC+8)
摘要 If $\\Omega$ is a domain in $\\bold C^n$ and if (for $p\\in\\Omega$, $X\\in \\bold C^n)$ $F_\\Omega(p;X)$ denotes the infinitesimal Kobayashi metric on $\\Omega$, then the indicatrix of $\\Omega$ at $p$ is the set $I_\\Omega(p)=\\{X\\in\\bold C^n\\: F_\\Omega(p;X)<1\\}$.
In this paper the author answers one of the questions posed by S. Kobayashi [Bull. Amer. Math. Soc. 82 (1976), no. 3, 357–416; MR0414940]. Namely, he proves that if $\\Omega$ is a (bounded or unbounded) convex domain in $\\bold C^n$, then the indicatrix of $\\Omega$ is also a convex domain in $\\bold C^n$. As an application, the author also gives an elementary proof of the classical result due to Poincaré concerning the nonequivalence of the unit ball and the polydisc in $\\bold C^n$.
關聯 Chinese Journal of Mathematics,17(1),77-82
AMS MathSciNet:MR1007877
資料類型 article
dc.contributor 應數系
dc.creator (作者) 陳天進
dc.creator (作者) Chen, Ten Ging
dc.date (日期) 1989-03
dc.date.accessioned 25-Sep-2018 16:21:46 (UTC+8)-
dc.date.available 25-Sep-2018 16:21:46 (UTC+8)-
dc.date.issued (上傳時間) 25-Sep-2018 16:21:46 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/120125-
dc.description.abstract (摘要) If $\\Omega$ is a domain in $\\bold C^n$ and if (for $p\\in\\Omega$, $X\\in \\bold C^n)$ $F_\\Omega(p;X)$ denotes the infinitesimal Kobayashi metric on $\\Omega$, then the indicatrix of $\\Omega$ at $p$ is the set $I_\\Omega(p)=\\{X\\in\\bold C^n\\: F_\\Omega(p;X)<1\\}$.
In this paper the author answers one of the questions posed by S. Kobayashi [Bull. Amer. Math. Soc. 82 (1976), no. 3, 357–416; MR0414940]. Namely, he proves that if $\\Omega$ is a (bounded or unbounded) convex domain in $\\bold C^n$, then the indicatrix of $\\Omega$ is also a convex domain in $\\bold C^n$. As an application, the author also gives an elementary proof of the classical result due to Poincaré concerning the nonequivalence of the unit ball and the polydisc in $\\bold C^n$.
en_US
dc.format.extent 101 bytes-
dc.format.mimetype text/html-
dc.relation (關聯) Chinese Journal of Mathematics,17(1),77-82
dc.relation (關聯) AMS MathSciNet:MR1007877
dc.title (題名) Some remarks on the indicatrix of invariant metric on convex domains
dc.type (資料類型) article