dc.contributor | 應數系 | |
dc.creator (作者) | 陳天進 | |
dc.creator (作者) | Chen, Ten Ging | |
dc.date (日期) | 1989-03 | |
dc.date.accessioned | 25-Sep-2018 16:21:46 (UTC+8) | - |
dc.date.available | 25-Sep-2018 16:21:46 (UTC+8) | - |
dc.date.issued (上傳時間) | 25-Sep-2018 16:21:46 (UTC+8) | - |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/120125 | - |
dc.description.abstract (摘要) | If $\\Omega$ is a domain in $\\bold C^n$ and if (for $p\\in\\Omega$, $X\\in \\bold C^n)$ $F_\\Omega(p;X)$ denotes the infinitesimal Kobayashi metric on $\\Omega$, then the indicatrix of $\\Omega$ at $p$ is the set $I_\\Omega(p)=\\{X\\in\\bold C^n\\: F_\\Omega(p;X)<1\\}$. In this paper the author answers one of the questions posed by S. Kobayashi [Bull. Amer. Math. Soc. 82 (1976), no. 3, 357–416; MR0414940]. Namely, he proves that if $\\Omega$ is a (bounded or unbounded) convex domain in $\\bold C^n$, then the indicatrix of $\\Omega$ is also a convex domain in $\\bold C^n$. As an application, the author also gives an elementary proof of the classical result due to Poincaré concerning the nonequivalence of the unit ball and the polydisc in $\\bold C^n$. | en_US |
dc.format.extent | 101 bytes | - |
dc.format.mimetype | text/html | - |
dc.relation (關聯) | Chinese Journal of Mathematics,17(1),77-82 | |
dc.relation (關聯) | AMS MathSciNet:MR1007877 | |
dc.title (題名) | Some remarks on the indicatrix of invariant metric on convex domains | |
dc.type (資料類型) | article | |