Publications-Periodical Articles
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 On the ""fair`` games problem for the weighted generalized Petersburg games 作者 林光賢
Lin, Kuang Hsien
陳天進
Chen, Ten Ging
Yang, Ling-Huey貢獻者 應數系 日期 1993-03 上傳時間 25-Sep-2018 16:22:01 (UTC+8) 摘要 Let $S_n=\\sum^n_{j=1}a_jY_j$, $n\\geq 1$, where $\\{Y_n,\\ n\\geq 1\\}$ is a sequence of i.i.d. random variables with the generalized Petersburg distribution $P\\{Y_1=q^{-k}\\}=pq^{k-1}$, $k\\geq 1$, where $0 thereby generalizing a result of A. Adler and the reviewer [Bull. Inst. Math. Acad. Sinica 17 (1989), no. 3, 211–227; MR1042179] obtained for the particular choice $a_n=n^\\alpha$, $n\\geq 1$, where $\\alpha>-1$. This problem has the following interesting interpretation. Suppose a player wins $a_nY_n$ dollars during the $n$th game in a sequence of generalized Petersburg games. If $M_n=\\sum^n_{j=1}m_j$ represents the accumulated entrance fees for playing the first $n$ games, then $S_n/M_n\\overset P\\to\\rightarrow 1$ is the assertation that $\\{m_n,\\ n\\geq 1\\}$ is a "fair solution in the weak sense to the games``.
關聯 Chinese Journal of Mathematics,21(1),21-31
AMS MathSciNet:MR1209488資料類型 article dc.contributor 應數系 dc.creator (作者) 林光賢 dc.creator (作者) Lin, Kuang Hsien dc.creator (作者) 陳天進 dc.creator (作者) Chen, Ten Ging dc.creator (作者) Yang, Ling-Huey dc.date (日期) 1993-03 dc.date.accessioned 25-Sep-2018 16:22:01 (UTC+8) - dc.date.available 25-Sep-2018 16:22:01 (UTC+8) - dc.date.issued (上傳時間) 25-Sep-2018 16:22:01 (UTC+8) - dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/120128 - dc.description.abstract (摘要) Let $S_n=\\sum^n_{j=1}a_jY_j$, $n\\geq 1$, where $\\{Y_n,\\ n\\geq 1\\}$ is a sequence of i.i.d. random variables with the generalized Petersburg distribution $P\\{Y_1=q^{-k}\\}=pq^{k-1}$, $k\\geq 1$, where $0 thereby generalizing a result of A. Adler and the reviewer [Bull. Inst. Math. Acad. Sinica 17 (1989), no. 3, 211–227; MR1042179] obtained for the particular choice $a_n=n^\\alpha$, $n\\geq 1$, where $\\alpha>-1$. This problem has the following interesting interpretation. Suppose a player wins $a_nY_n$ dollars during the $n$th game in a sequence of generalized Petersburg games. If $M_n=\\sum^n_{j=1}m_j$ represents the accumulated entrance fees for playing the first $n$ games, then $S_n/M_n\\overset P\\to\\rightarrow 1$ is the assertation that $\\{m_n,\\ n\\geq 1\\}$ is a "fair solution in the weak sense to the games``.
en_US dc.format.extent 161 bytes - dc.format.mimetype text/html - dc.relation (關聯) Chinese Journal of Mathematics,21(1),21-31 dc.relation (關聯) AMS MathSciNet:MR1209488 dc.title (題名) On the ""fair`` games problem for the weighted generalized Petersburg games dc.type (資料類型) article