Publications-Periodical Articles
Article View/Open
Publication Export
-
題名 The corestriction of p-symbols 作者 Chu, Huah
Kang, Ming Chang
陳永秋
Tan, Eng-Tjioe貢獻者 應數系 日期 1988 上傳時間 25-Sep-2018 16:23:03 (UTC+8) 摘要 Let $K$ be a field of characteristic $p>0$. For any $a,b\\in K$, $b\ot=0$ the $p$-symbol $[a,b)_K$ denotes the similarity class in $\\roman{Br}(K)$ of the central simple $p$-algebra: $\\bigoplus_{0\\leq i,j\\leq p-1}Kx^iy^j$, $x^p-x=a$, $y^p=b$, $yx=(x+1)y$; and for any $a,b\\in K$, $(a,b)_K$ denotes the class of: $\\bigoplus_{0\\leq i,j\\leq p-1}Kx^iy^j$, $x^p=a$, $y^p=b$, $yx=xy+1$. The following reciprocity laws for the corestriction of the above $p$-symbols are proven. Theorem 3: Let $K(a)$ and $K(c)$ be any finite separable field extensions of $K$, $p(X)$ and $f(X)$ the irreducible polynomials of $a$ and $c$ over $K$, respectively. If $p(X)$ and $f(X)$ are distinct polynomials, for any $s,t\\in K$ one has $$\\displaylines{ \\roman{cor}_{K(a)/K}\\left(\\frac{f`(a)}{f(a)},sa+t\\right)_{K(a)}+ \\roman{cor}_{K(c)/K}\\left(\\frac{p`(c)}{p(c)},sc+t\\right)_{K(c)}\\hfill\\cr \\hfill{}=\\roman{cor}_{K(a)/K}[s,f(a))_{K(a)}=\\roman{cor}_{K(c)/K} [s,p(c))_{K(c)}.\\cr}$$ Theorem 4: With the same notations as in Theorem 3, one has $\\roman{cor} _{K(a)/K}[s^pa+t,f(a))_{K(a)}=\\roman{cor}_{K(c)/K}[s^pc+t,p(c))_{K(c)}$. These results extend the reciprocity laws of Rosset and Tate for the corestriction of Milnor functions and of P. Mammone [same journal 14 (1986), no. 3, 517–529; MR0823352] for the corestriction of $p$-symbols. Mammone`s reciprocity law concerned the multiplicative part of the $p$-symbol, i.e., the second argument. The above result also allows elements to appear in the first variable. 關聯 Communications in Algebra, 16(4), 735-741
AMS MathSciNet:MR932631資料類型 article DOI http://dx.doi.org/10.1080/00927878808823599 dc.contributor 應數系 dc.creator (作者) Chu, Huah dc.creator (作者) Kang, Ming Chang dc.creator (作者) 陳永秋 dc.creator (作者) Tan, Eng-Tjioe dc.date (日期) 1988 dc.date.accessioned 25-Sep-2018 16:23:03 (UTC+8) - dc.date.available 25-Sep-2018 16:23:03 (UTC+8) - dc.date.issued (上傳時間) 25-Sep-2018 16:23:03 (UTC+8) - dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/120130 - dc.description.abstract (摘要) Let $K$ be a field of characteristic $p>0$. For any $a,b\\in K$, $b\ot=0$ the $p$-symbol $[a,b)_K$ denotes the similarity class in $\\roman{Br}(K)$ of the central simple $p$-algebra: $\\bigoplus_{0\\leq i,j\\leq p-1}Kx^iy^j$, $x^p-x=a$, $y^p=b$, $yx=(x+1)y$; and for any $a,b\\in K$, $(a,b)_K$ denotes the class of: $\\bigoplus_{0\\leq i,j\\leq p-1}Kx^iy^j$, $x^p=a$, $y^p=b$, $yx=xy+1$. The following reciprocity laws for the corestriction of the above $p$-symbols are proven. Theorem 3: Let $K(a)$ and $K(c)$ be any finite separable field extensions of $K$, $p(X)$ and $f(X)$ the irreducible polynomials of $a$ and $c$ over $K$, respectively. If $p(X)$ and $f(X)$ are distinct polynomials, for any $s,t\\in K$ one has $$\\displaylines{ \\roman{cor}_{K(a)/K}\\left(\\frac{f`(a)}{f(a)},sa+t\\right)_{K(a)}+ \\roman{cor}_{K(c)/K}\\left(\\frac{p`(c)}{p(c)},sc+t\\right)_{K(c)}\\hfill\\cr \\hfill{}=\\roman{cor}_{K(a)/K}[s,f(a))_{K(a)}=\\roman{cor}_{K(c)/K} [s,p(c))_{K(c)}.\\cr}$$ Theorem 4: With the same notations as in Theorem 3, one has $\\roman{cor} _{K(a)/K}[s^pa+t,f(a))_{K(a)}=\\roman{cor}_{K(c)/K}[s^pc+t,p(c))_{K(c)}$. These results extend the reciprocity laws of Rosset and Tate for the corestriction of Milnor functions and of P. Mammone [same journal 14 (1986), no. 3, 517–529; MR0823352] for the corestriction of $p$-symbols. Mammone`s reciprocity law concerned the multiplicative part of the $p$-symbol, i.e., the second argument. The above result also allows elements to appear in the first variable. en_US dc.format.extent 160 bytes - dc.format.mimetype text/html - dc.relation (關聯) Communications in Algebra, 16(4), 735-741 dc.relation (關聯) AMS MathSciNet:MR932631 dc.title (題名) The corestriction of p-symbols dc.type (資料類型) article dc.identifier.doi (DOI) 10.1080/00927878808823599 dc.doi.uri (DOI) http://dx.doi.org/10.1080/00927878808823599