學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 Some Results on Path Pairs
作者 劉洪鈞
貢獻者 李陽明
劉洪鈞
關鍵詞 Path Pairs ;
     Non - intersecting Paths;
日期 2002
上傳時間 11-Oct-2018 11:50:48 (UTC+8)
摘要 In this thesis, our goal is to use mathematical induction to give a direct proof to show that the number of b(n - m, k ; n, k - m) is m/(n+k-m) ,where b(n – m, k; n, k - m) denotes the number of non-intersecting paths that the upper path goes from (0, 0) to(n - m, k) while the lower path goes from (0, 0) to (n, k - m). Furthermore, we conclude two applications about b(n-m, k ; n, k-m), namely b(n, k) (see Definition 2.2) and PP(n, k) (see Definition 4.4). We also bring up some open problems concerning our topics.
參考文獻 References
     [1] Bessenrodt, C., “On hooks of Young diagrams”, Annals of Combinatorics 2 (1998), 103-110.
     [2] Franzblau, D. and Zeilberger, D., “A bijective proof of the hook-length formula”, Journal of Algorithms 3 (1982), 317-342.
     [3] Goulden, I. P. and Jackson, D. M., Combinatorial Enumeration, John Wiley & Sons, 1983.
     [4] Greene, C., Nijenhuis, A. and Wilf, H. S., “A probabilistic proof of a formula for the number of Young tableaux of a given shape”, Adv. in Math 31 (1979),104-109.
     [5] Grimaldi, Ralph P., Discrete and Combinatorial Mathematics: An Applied Introduction, 3nd ed., Addison-Wesley, 1994.
     [6] Hillman, A. P. and Grassl, R. M., “Reverse plane partition and tableau hook numbers”, Journal of Combinatorial Theory 21 (1976), 216-221.
     [7] Knuth, Donald E., “Permutations, matrices and generalized Young tableaux”, Pac. J. Math 34 (1970).
     [8] Knuth, Donald E., The Art Of Computer Programming, Vol. 3, Sorting and Searching, 2nd ed., Addison-Wesley, 1997.
     [9] Krattenthaler, C., “The major counting of nonintersecting lattice paths and generating functions for tableaux”, Memoirs of the American Mathematical Society (1995), Vol 115, Number 552.
     [10] Levine, J., “Note on the number of pairs of non-intersecting routes”, Scripta Mathematica 24 (1959), 335-338.
     [11] Liu, C. L., Introduction to Combinatorial Mathematics, McGraw-Hill, New York, 1968.
     [12] Narayana, T. V., Lattice path combinatorics with statistical applications, University of Toronto Press, 1979.
     [13] Nijenhuis, A. and Wilf, H. S., Combinatorial Algorithms, 2nd ed., Academic Press, New York, 1978.
     [14] Pólya, G., “On the number of certain lattice polygons”, Journal of Combinatorial Theory6 (1969), 102-105.
     [15] Regev, A. and Zeilberger, D., “Proof of a Conjecture on Multisets of Hook Numbers”, Annals of Combinatorics 1 (1997), 391-394.
     [16] Riordan, J., Combinatorial Identities, John Wiley & Sons, 1968.
     [17] Shapiro, L. W., “A Catalan triangle”, Discrete Mathematics 14 (1976), 83-90.
     [18] William, F., Young Tableaux: with applications to representation theory and geometry, Cambridge University Press, New York, 1997.
     [19] Woan, W. J., Shapiro, L., Rogers, D. G., “The Catalan numbers, the Lebesgue integral, and 4n-2”, Am. Math. Monthly 104 (1997), 10.
     [20] Woan, W. J., “Area of Catalan paths”, Discrete Mathematics 226 (2001),439-444.
     [21] Zeilberger, D., “A short hook-lengths bijection inspired by the Greene-Nijenhuis-Wilf proof”, Discrete Mathematics 51 (1984), 101-108.
描述 碩士
國立政治大學
應用數學系
90
資料來源 http://thesis.lib.nccu.edu.tw/record/#G91NCCV3412012
資料類型 thesis
dc.contributor.advisor 李陽明-
dc.contributor.author (Authors) 劉洪鈞-
dc.creator (作者) 劉洪鈞-
dc.date (日期) 2002-
dc.date.accessioned 11-Oct-2018 11:50:48 (UTC+8)-
dc.date.available 11-Oct-2018 11:50:48 (UTC+8)-
dc.date.issued (上傳時間) 11-Oct-2018 11:50:48 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/120511-
dc.description (描述) 碩士-
dc.description (描述) 國立政治大學-
dc.description (描述) 應用數學系-
dc.description (描述) 90-
dc.description.abstract (摘要) In this thesis, our goal is to use mathematical induction to give a direct proof to show that the number of b(n - m, k ; n, k - m) is m/(n+k-m) ,where b(n – m, k; n, k - m) denotes the number of non-intersecting paths that the upper path goes from (0, 0) to(n - m, k) while the lower path goes from (0, 0) to (n, k - m). Furthermore, we conclude two applications about b(n-m, k ; n, k-m), namely b(n, k) (see Definition 2.2) and PP(n, k) (see Definition 4.4). We also bring up some open problems concerning our topics.-
dc.description.tableofcontents Abstract i
     1 Introduction 1
     1.1 Importance of this study 1
     1.2 Purpose of this study 1
     1.3 Structure of this study 1
     2 Literature review 3
     3 The Number of b(n - m, k;n, k - m) 7
     3.1 The recurrence relation of b(n - m, k;n, k - m) 7
     3.2 The proof of b(n - m, k;n, k - m) 9
     3.3 Example
     4 Applications of b(n - m, k ; n, k - m) 14
     4.1 The number of b(n, k) 14
     4.2 The number of PP(n, k) 14
     5 Conclusion 26
     References 29
-
dc.format.extent 115 bytes-
dc.format.mimetype text/html-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G91NCCV3412012-
dc.subject (關鍵詞) Path Pairs ;
     Non - intersecting Paths;
-
dc.title (題名) Some Results on Path Pairs-
dc.type (資料類型) thesis-
dc.relation.reference (參考文獻) References
     [1] Bessenrodt, C., “On hooks of Young diagrams”, Annals of Combinatorics 2 (1998), 103-110.
     [2] Franzblau, D. and Zeilberger, D., “A bijective proof of the hook-length formula”, Journal of Algorithms 3 (1982), 317-342.
     [3] Goulden, I. P. and Jackson, D. M., Combinatorial Enumeration, John Wiley & Sons, 1983.
     [4] Greene, C., Nijenhuis, A. and Wilf, H. S., “A probabilistic proof of a formula for the number of Young tableaux of a given shape”, Adv. in Math 31 (1979),104-109.
     [5] Grimaldi, Ralph P., Discrete and Combinatorial Mathematics: An Applied Introduction, 3nd ed., Addison-Wesley, 1994.
     [6] Hillman, A. P. and Grassl, R. M., “Reverse plane partition and tableau hook numbers”, Journal of Combinatorial Theory 21 (1976), 216-221.
     [7] Knuth, Donald E., “Permutations, matrices and generalized Young tableaux”, Pac. J. Math 34 (1970).
     [8] Knuth, Donald E., The Art Of Computer Programming, Vol. 3, Sorting and Searching, 2nd ed., Addison-Wesley, 1997.
     [9] Krattenthaler, C., “The major counting of nonintersecting lattice paths and generating functions for tableaux”, Memoirs of the American Mathematical Society (1995), Vol 115, Number 552.
     [10] Levine, J., “Note on the number of pairs of non-intersecting routes”, Scripta Mathematica 24 (1959), 335-338.
     [11] Liu, C. L., Introduction to Combinatorial Mathematics, McGraw-Hill, New York, 1968.
     [12] Narayana, T. V., Lattice path combinatorics with statistical applications, University of Toronto Press, 1979.
     [13] Nijenhuis, A. and Wilf, H. S., Combinatorial Algorithms, 2nd ed., Academic Press, New York, 1978.
     [14] Pólya, G., “On the number of certain lattice polygons”, Journal of Combinatorial Theory6 (1969), 102-105.
     [15] Regev, A. and Zeilberger, D., “Proof of a Conjecture on Multisets of Hook Numbers”, Annals of Combinatorics 1 (1997), 391-394.
     [16] Riordan, J., Combinatorial Identities, John Wiley & Sons, 1968.
     [17] Shapiro, L. W., “A Catalan triangle”, Discrete Mathematics 14 (1976), 83-90.
     [18] William, F., Young Tableaux: with applications to representation theory and geometry, Cambridge University Press, New York, 1997.
     [19] Woan, W. J., Shapiro, L., Rogers, D. G., “The Catalan numbers, the Lebesgue integral, and 4n-2”, Am. Math. Monthly 104 (1997), 10.
     [20] Woan, W. J., “Area of Catalan paths”, Discrete Mathematics 226 (2001),439-444.
     [21] Zeilberger, D., “A short hook-lengths bijection inspired by the Greene-Nijenhuis-Wilf proof”, Discrete Mathematics 51 (1984), 101-108.
-