Publications-Conference papers
Article View/Open
Publication Export
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
Title | 結合長短期記憶與注意力模型於情感分析論文摘要 |
Creator | 蔡豪軒 黃日鉦 |
Contributor | 2019智慧企業資訊應用發展國際研討會 |
Key Words | 情感分析、情緒分析、長短期記憶、注意力模型、文字探勘。 Sentiment analysis, emotion analysis, long-short term memory, attention model, text mining. |
Date | 2019-06 |
Date Issued | 17-Jul-2019 15:07:32 (UTC+8) |
Summary | 情感分析的目的為提取文本當中的情緒特徵,以供分析人員進行學術或商業的應用。然而,傳統的情感分析並未考慮到在文本的內容以及情緒特徵間存在不同的影響權重。因此,本研究提出一個結合了雙向長短期記憶以及注意力模型於情感分析的研究架構,來結合兩者資料作為神經網路的輸入變數,分別進行雙向長短期記憶模型進行訓練,並在雙向長短期記憶模型後加入注意力模型,使模型可以賦予重點單詞與情緒特徵更高的權重。實證結果發現,結合情緒特徵以及使用注意力模型的模型架構,可以較過去使用的雙向長短期記憶模型得到了更佳的情感分析結果。 The purpose of the sentiment analysis is to extract emotional features in texts for decision-makers to process the applications of the academy or business. However, the conventional sentiment analysis does not consider the different weights between the content of the text and the emotional features. Therefore, this paper proposes a structure which combines bidirectional long-short term memory and attention model in sentiment analysis. The proposed model combines the two information as input data of neural network and trains the network via the bidirectional long-short term memory model. In addition, this paper add the attention model behind the bidirectional long-short term memory model to increase the weighs on specific emotion features. Finally, the proposed model is compared with other conventional models and show the better performance than the bidirectional long-short term memory model. |
Relation | 2019智慧企業資訊應用發展國際研討會 |
Type | conference |
dc.contributor | 2019智慧企業資訊應用發展國際研討會 | |
dc.creator (作者) | 蔡豪軒 | |
dc.creator (作者) | 黃日鉦 | |
dc.date (日期) | 2019-06 | |
dc.date.accessioned | 17-Jul-2019 15:07:32 (UTC+8) | - |
dc.date.available | 17-Jul-2019 15:07:32 (UTC+8) | - |
dc.date.issued (上傳時間) | 17-Jul-2019 15:07:32 (UTC+8) | - |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/124342 | - |
dc.description.abstract (摘要) | 情感分析的目的為提取文本當中的情緒特徵,以供分析人員進行學術或商業的應用。然而,傳統的情感分析並未考慮到在文本的內容以及情緒特徵間存在不同的影響權重。因此,本研究提出一個結合了雙向長短期記憶以及注意力模型於情感分析的研究架構,來結合兩者資料作為神經網路的輸入變數,分別進行雙向長短期記憶模型進行訓練,並在雙向長短期記憶模型後加入注意力模型,使模型可以賦予重點單詞與情緒特徵更高的權重。實證結果發現,結合情緒特徵以及使用注意力模型的模型架構,可以較過去使用的雙向長短期記憶模型得到了更佳的情感分析結果。 | |
dc.description.abstract (摘要) | The purpose of the sentiment analysis is to extract emotional features in texts for decision-makers to process the applications of the academy or business. However, the conventional sentiment analysis does not consider the different weights between the content of the text and the emotional features. Therefore, this paper proposes a structure which combines bidirectional long-short term memory and attention model in sentiment analysis. The proposed model combines the two information as input data of neural network and trains the network via the bidirectional long-short term memory model. In addition, this paper add the attention model behind the bidirectional long-short term memory model to increase the weighs on specific emotion features. Finally, the proposed model is compared with other conventional models and show the better performance than the bidirectional long-short term memory model. | |
dc.format.extent | 155114 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.relation (關聯) | 2019智慧企業資訊應用發展國際研討會 | |
dc.subject (關鍵詞) | 情感分析、情緒分析、長短期記憶、注意力模型、文字探勘。 | |
dc.subject (關鍵詞) | Sentiment analysis, emotion analysis, long-short term memory, attention model, text mining. | |
dc.title (題名) | 結合長短期記憶與注意力模型於情感分析論文摘要 | |
dc.type (資料類型) | conference |