Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 深度學習於國畫主題辨識之應用
Identifying Chinese painting genres with deep learning
作者 許嘉宏
Hsu, Chia-Hung
貢獻者 蔡炎龍
Tsai, Yen-Lung
許嘉宏
Hsu, Chia-Hung
關鍵詞 深度學習
卷積神經網路
影像辨識
Deep Learning
Nerural Network
CNN
Image Recognition
日期 2019
上傳時間 7-Aug-2019 16:35:21 (UTC+8)
摘要 本篇文章主要使用卷積神經網路來進行圖像辨識,資料來源用台北故宮 博物院線上資料庫,其中圖像收藏量三萬筆,本篇將範圍縮小至畫軸的部 分,總計有 4 千筆,因為每張圖像有主要主題跟次要主題,無法直接用卷 積神經網路來分類。所以先利用 SLIC 演算法將圖像分割,再來進行標籤及 訓練模型。最後如有新的作品要進行辨識,也進行同樣分割,用模型辨識 後,再統整結果得到此作品有哪些主題性。
In this paper, we want to recognize one image with multiple genres. We collected data from National Palace Museun. If we just use traditional CNN to recognize it, we only get one genre with one image. Hence, we segment image with SLIC algorithm. It can segment image into fixed size with similar range, then we can use them to train the model. After training, if we get the new image, we can use SILC algorithm with same parameter and put it in the model. Then we can recognize this new image with multiple genres.
參考文獻 [1]RadhakrishnaAchanta,AppuShaji,KevinSmith,AurelienLucchi,PascalFua,andSabine Süsstrunk. Slic superpixels, 2010.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. CoRR, abs/1409.0473, 2014.

[3] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res., 12:2121–2159, 2011.

[4] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. CoRR, abs/ 1311.2524, 2013.

[5] J. B. Heaton, N. G. Polson, and J. H. Witte. Deep learning in finance. CoRR, abs/ 1602.06561, 2016.

[6] Donald Hebb. The The Organization of Behavior. 1949.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. In Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q. Weinberger, editors, NIPS, pages 1106–1114, 2012.

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 1097– 1105. Curran Associates, Inc., 2012.

[9] Jan Kukačka, Vladimir Golkov, and Daniel Cremers. Regularization for deep learning: A taxonomy, 2017.

[10]S.Lawrence,C.L.Giles,AhChungTsoi,andA.D.Back.Facerecognition:aconvolutional neural-network approach. Neural Networks, IEEE Transactions on, 8(1):98–113, January 1997.

[11] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553): 436–444, may 2015.

[12] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network, 2013.

[13] National Palace Museun. 書畫典藏資料檢索系統, 2019.

[14] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Trans. on Knowl. and Data Eng., 22(10):1345–1359, October 2010.

[15] Tara N. Sainath, Abdel rahman Mohamed, Brian Kingsbury, and Bhuvana Ramabhadran. Deep convolutional neural networks for lvcsr. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, 2013.

[16] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In International Conference on Learning Representations, 2015.

[17] Jonathan J Tompson, Arjun Jain, Yann LeCun, and Christoph Bregler. Joint training of a convolutional network and a graphical model for human pose estimation. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 1799–1807. Curran Associates, Inc., 2014.

[18] H. Y. Xiong, B. Alipanahi, L. J. Lee, H. Bretschneider, D. Merico, R. K. C. Yuen, Y. Hua, S. Gueroussov, H. S. Najafabadi, T. R. Hughes, Q. Morris, Y. Barash, A. R. Krainer, N. Jojic, S. W. Scherer, B. J. Blencowe, and B. J. Frey. The human splicing code reveals new insights into the genetic determinants of disease. Science, 347(6218):1254806– 1254806, dec 2014.
描述 碩士
國立政治大學
應用數學系
104751003
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0104751003
資料類型 thesis
dc.contributor.advisor 蔡炎龍zh_TW
dc.contributor.advisor Tsai, Yen-Lungen_US
dc.contributor.author (Authors) 許嘉宏zh_TW
dc.contributor.author (Authors) Hsu, Chia-Hungen_US
dc.creator (作者) 許嘉宏zh_TW
dc.creator (作者) Hsu, Chia-Hungen_US
dc.date (日期) 2019en_US
dc.date.accessioned 7-Aug-2019 16:35:21 (UTC+8)-
dc.date.available 7-Aug-2019 16:35:21 (UTC+8)-
dc.date.issued (上傳時間) 7-Aug-2019 16:35:21 (UTC+8)-
dc.identifier (Other Identifiers) G0104751003en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/124868-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學系zh_TW
dc.description (描述) 104751003zh_TW
dc.description.abstract (摘要) 本篇文章主要使用卷積神經網路來進行圖像辨識,資料來源用台北故宮 博物院線上資料庫,其中圖像收藏量三萬筆,本篇將範圍縮小至畫軸的部 分,總計有 4 千筆,因為每張圖像有主要主題跟次要主題,無法直接用卷 積神經網路來分類。所以先利用 SLIC 演算法將圖像分割,再來進行標籤及 訓練模型。最後如有新的作品要進行辨識,也進行同樣分割,用模型辨識 後,再統整結果得到此作品有哪些主題性。zh_TW
dc.description.abstract (摘要) In this paper, we want to recognize one image with multiple genres. We collected data from National Palace Museun. If we just use traditional CNN to recognize it, we only get one genre with one image. Hence, we segment image with SLIC algorithm. It can segment image into fixed size with similar range, then we can use them to train the model. After training, if we get the new image, we can use SILC algorithm with same parameter and put it in the model. Then we can recognize this new image with multiple genres.en_US
dc.description.tableofcontents 第一章 Introduction 1
第二章 Deep Learning 3
第一節 Neurons and Neural Networks 4
第二節 Activation Function 7
第三節 Loss Function 9
第四節 Gradient Descent Method 11
第三章 Convolutional Neural Network 13
第一節 Convolution Layer 13
第二節 Pooling Layer 22
第四章 Data Collection and Processing 25
第一節 K-means Clustering 25
第二節 SLIC Algorithm 27
第三節 Make the Labels 29
第五章 Model Construction 33
第一節 Models Structure 33
第二節 Transfer Learning 37
第三節 Imbalance Data 38
第四節 Result 38
第六章 Conclusion 41
Appendix A Python Script 42
A.1 Segment the Painting 42
A.2 Create the Label 45
A.3 Train the Model with the Model D 47
A.4 Train the model with Transfer Learning 50
A.5 GUI 53
Bibliography 64
zh_TW
dc.format.extent 13356256 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0104751003en_US
dc.subject (關鍵詞) 深度學習zh_TW
dc.subject (關鍵詞) 卷積神經網路zh_TW
dc.subject (關鍵詞) 影像辨識zh_TW
dc.subject (關鍵詞) Deep Learningen_US
dc.subject (關鍵詞) Nerural Networken_US
dc.subject (關鍵詞) CNNen_US
dc.subject (關鍵詞) Image Recognitionen_US
dc.title (題名) 深度學習於國畫主題辨識之應用zh_TW
dc.title (題名) Identifying Chinese painting genres with deep learningen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1]RadhakrishnaAchanta,AppuShaji,KevinSmith,AurelienLucchi,PascalFua,andSabine Süsstrunk. Slic superpixels, 2010.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. CoRR, abs/1409.0473, 2014.

[3] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res., 12:2121–2159, 2011.

[4] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. CoRR, abs/ 1311.2524, 2013.

[5] J. B. Heaton, N. G. Polson, and J. H. Witte. Deep learning in finance. CoRR, abs/ 1602.06561, 2016.

[6] Donald Hebb. The The Organization of Behavior. 1949.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. In Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q. Weinberger, editors, NIPS, pages 1106–1114, 2012.

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 1097– 1105. Curran Associates, Inc., 2012.

[9] Jan Kukačka, Vladimir Golkov, and Daniel Cremers. Regularization for deep learning: A taxonomy, 2017.

[10]S.Lawrence,C.L.Giles,AhChungTsoi,andA.D.Back.Facerecognition:aconvolutional neural-network approach. Neural Networks, IEEE Transactions on, 8(1):98–113, January 1997.

[11] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553): 436–444, may 2015.

[12] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network, 2013.

[13] National Palace Museun. 書畫典藏資料檢索系統, 2019.

[14] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Trans. on Knowl. and Data Eng., 22(10):1345–1359, October 2010.

[15] Tara N. Sainath, Abdel rahman Mohamed, Brian Kingsbury, and Bhuvana Ramabhadran. Deep convolutional neural networks for lvcsr. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, 2013.

[16] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In International Conference on Learning Representations, 2015.

[17] Jonathan J Tompson, Arjun Jain, Yann LeCun, and Christoph Bregler. Joint training of a convolutional network and a graphical model for human pose estimation. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 1799–1807. Curran Associates, Inc., 2014.

[18] H. Y. Xiong, B. Alipanahi, L. J. Lee, H. Bretschneider, D. Merico, R. K. C. Yuen, Y. Hua, S. Gueroussov, H. S. Najafabadi, T. R. Hughes, Q. Morris, Y. Barash, A. R. Krainer, N. Jojic, S. W. Scherer, B. J. Blencowe, and B. J. Frey. The human splicing code reveals new insights into the genetic determinants of disease. Science, 347(6218):1254806– 1254806, dec 2014.
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU201900448en_US