Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 以階段型機率分佈表示異質生成衝擊系統
A System Subject to Non-Homogeneous Pure Birth Shocks with Phase-Type Distributions
作者 劉宏展
Liu, Hong-Zhan
貢獻者 陸行
Luh, Hsing
劉宏展
Liu, Hong-Zhan
關鍵詞 衝擊模型
階段型分佈
異質生成過程
再生過程
馬可夫過程
年齡置換策略
穩定機率
Shock model
Phase-type distribution
Non-homogeneous pure birth process
Renewal process
Markov process
Age replacement policy
Stationary probability
日期 2019
上傳時間 7-Aug-2019 16:35:33 (UTC+8)
摘要 考慮一個衝擊系統,它的衝擊依據異質生成過程而產生。這個系統有兩
種類型的損壞。類型一的損壞可以被修理消除。類型二的損壞可以被不定
期置換消除。假設兩個連續衝擊之間的時間間隔服從階段型分佈。例如,
在一個特殊的階段型分佈—亞指數分佈—之下,我們發現穩定機率存在的
條件。在這個模型下探討年齡置換策略,我們導出置換週期內的期望成本
率。為了找到最小化期望成本率的最佳定期置換年齡,我們提供一個有效
率的演算法並開發一個 MATLAB 工具來實現。一系列數值範例促使我們發
現新的定理,它比以前的定理更簡單,更實際,更直觀。該定理表明最佳定期置換年齡的存在性。
We consider a system subject to shocks which occur according to a non-homogeneous pure birth process. The system has two types of failures. Type-I failure can be removed by a repair. Type-II failure can be removed by an unplanned replacement. We assume that the inter-arrival time between consecutive shocks follows phase-type distributions. For example, under a special PH-distribution that is a hypo-exponential distribution, we find the conditions of the existence of stationary probability. Under this model we investigate the age replacement policy. We derive the expected cost rate of a replacement cycle. To find the optimal planned replacement age that minimizes the expected cost rate, we give an efficient algorithm and develop a MALAB tool for implementation. A series of numerical examples motivate us to write a new theorem. That is simpler, more practical, and more intuitive than a previous theorem. This theorem shows the existence of the optimal planned replacement age.
參考文獻 [1] M. S. A-Hameed and F. Proschan. Nonstationary shock models. Stochastic Processes and their Applications, 1(4):383–404, 1973.
[2] M. S. A-Hameed and F. Proschan. Shock Models with Underlying Birth Process. Journal of Applied Probability, 12(1):18–28, 1975.
[3] S. Asmussen, O. Nerman, and M. Olsson. Fitting phase-type distributions via the em algorithm. Scandinavian Journal of Statistics, 23(4):419–441, 1996.
[4] R. Barlow and L. Hunter. Optimum preventive maintenance policies. Operations Research, 8(1):90–100, 1960.
[5] P. Buchholz, J. Kriege, and I. Felko. Input Modeling with Phase-Type Distributions and Markov Models: Theory and Applications. Springer, New York, 2014.
[6] D. R. Cox. Renewal Theory. Methuen, London, 1962.
[7] J. D. Esary, A. W. Marshall, and F. Proschan. Shock Models and Wear Processes. The Annals of Probability, 1(4):627–649, 1973.
[8] F. S. Hillier and G. J. Lieberman. Introduction To Operations Research. McGraw-Hill, New York, 10th edition, 2015.
[9] R. S. Maier and C. A. O’Cinneide. A Closure Characterisation of Phase-Type Distributions. Journal of Applied Probability, 29(1):92–103, 1992.
[10] D. Montoro-Cazorla, R. PérezOcón, and M. C. Segovia. Shock and wear models under policy N using phase-type distributions. Applied Mathematical Modelling, 33:543–554, 2009.
[11] M. F. Neuts. Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. The Johns Hopkins University Press, Baltimore, 1981.
[12] B. F. Nielsen. Lecture notes on phase–type distributions for 02407 Stochastic Processes, 2017.
[13] S.H. Sheu, C.C. Chang, Z. G. Zhang, and Y.H. Chien. A note on replacement policy for a system subject to non-homogeneous pure birth shocks. European Journal of Operational Research, 216:503–508, 2012.
[14] H. M. Taylor and S. Karlin. An Introduction to Stochastic Modeling. Academic Press, Cambridge, Massachusetts, 3rd edition, 1998.
描述 碩士
國立政治大學
應用數學系
105751004
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0105751004
資料類型 thesis
dc.contributor.advisor 陸行zh_TW
dc.contributor.advisor Luh, Hsingen_US
dc.contributor.author (Authors) 劉宏展zh_TW
dc.contributor.author (Authors) Liu, Hong-Zhanen_US
dc.creator (作者) 劉宏展zh_TW
dc.creator (作者) Liu, Hong-Zhanen_US
dc.date (日期) 2019en_US
dc.date.accessioned 7-Aug-2019 16:35:33 (UTC+8)-
dc.date.available 7-Aug-2019 16:35:33 (UTC+8)-
dc.date.issued (上傳時間) 7-Aug-2019 16:35:33 (UTC+8)-
dc.identifier (Other Identifiers) G0105751004en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/124869-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學系zh_TW
dc.description (描述) 105751004zh_TW
dc.description.abstract (摘要) 考慮一個衝擊系統,它的衝擊依據異質生成過程而產生。這個系統有兩
種類型的損壞。類型一的損壞可以被修理消除。類型二的損壞可以被不定
期置換消除。假設兩個連續衝擊之間的時間間隔服從階段型分佈。例如,
在一個特殊的階段型分佈—亞指數分佈—之下,我們發現穩定機率存在的
條件。在這個模型下探討年齡置換策略,我們導出置換週期內的期望成本
率。為了找到最小化期望成本率的最佳定期置換年齡,我們提供一個有效
率的演算法並開發一個 MATLAB 工具來實現。一系列數值範例促使我們發
現新的定理,它比以前的定理更簡單,更實際,更直觀。該定理表明最佳定期置換年齡的存在性。
zh_TW
dc.description.abstract (摘要) We consider a system subject to shocks which occur according to a non-homogeneous pure birth process. The system has two types of failures. Type-I failure can be removed by a repair. Type-II failure can be removed by an unplanned replacement. We assume that the inter-arrival time between consecutive shocks follows phase-type distributions. For example, under a special PH-distribution that is a hypo-exponential distribution, we find the conditions of the existence of stationary probability. Under this model we investigate the age replacement policy. We derive the expected cost rate of a replacement cycle. To find the optimal planned replacement age that minimizes the expected cost rate, we give an efficient algorithm and develop a MALAB tool for implementation. A series of numerical examples motivate us to write a new theorem. That is simpler, more practical, and more intuitive than a previous theorem. This theorem shows the existence of the optimal planned replacement age.en_US
dc.description.tableofcontents 1 Introduction 1

2 Model Formulation 4
2.1 Definitions of NHPBP and Phase-Type Distributions 4
2.2 Assumptions of the System 5
2.3 Lifetime of the System 7

3 The Stability of the System 9
3.1 The Stationary Probability 9
3.2 The Conditions of the Existence of Stationary Probability 11

4 Age Replacement Policy 14
4.1 Expected Cost Functions 15
4.2 The Optimal Planned Replacement Age 17

5 Algorithmic Computation 20
5.1 The Structure of the Algorithm 22
5.2 Summary of the Algorithm 23

6 Numerical Examples 25

7 Conclusion 31

Appendix A MATLAB Phase-Type Distribution Tool 32
A.1 Basic Program 32
A.1.1 Operators 32
A.1.2 Functions 33
A.1.3 Support Program 34
A.2 Program for Basic the Elements of the System 34
A.3 Programs for the Optimal Algorithm 37

Appendix B Special Phase-Type Distributions 39

Bibliography 41
zh_TW
dc.format.extent 780415 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0105751004en_US
dc.subject (關鍵詞) 衝擊模型zh_TW
dc.subject (關鍵詞) 階段型分佈zh_TW
dc.subject (關鍵詞) 異質生成過程zh_TW
dc.subject (關鍵詞) 再生過程zh_TW
dc.subject (關鍵詞) 馬可夫過程zh_TW
dc.subject (關鍵詞) 年齡置換策略zh_TW
dc.subject (關鍵詞) 穩定機率zh_TW
dc.subject (關鍵詞) Shock modelen_US
dc.subject (關鍵詞) Phase-type distributionen_US
dc.subject (關鍵詞) Non-homogeneous pure birth processen_US
dc.subject (關鍵詞) Renewal processen_US
dc.subject (關鍵詞) Markov processen_US
dc.subject (關鍵詞) Age replacement policyen_US
dc.subject (關鍵詞) Stationary probabilityen_US
dc.title (題名) 以階段型機率分佈表示異質生成衝擊系統zh_TW
dc.title (題名) A System Subject to Non-Homogeneous Pure Birth Shocks with Phase-Type Distributionsen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] M. S. A-Hameed and F. Proschan. Nonstationary shock models. Stochastic Processes and their Applications, 1(4):383–404, 1973.
[2] M. S. A-Hameed and F. Proschan. Shock Models with Underlying Birth Process. Journal of Applied Probability, 12(1):18–28, 1975.
[3] S. Asmussen, O. Nerman, and M. Olsson. Fitting phase-type distributions via the em algorithm. Scandinavian Journal of Statistics, 23(4):419–441, 1996.
[4] R. Barlow and L. Hunter. Optimum preventive maintenance policies. Operations Research, 8(1):90–100, 1960.
[5] P. Buchholz, J. Kriege, and I. Felko. Input Modeling with Phase-Type Distributions and Markov Models: Theory and Applications. Springer, New York, 2014.
[6] D. R. Cox. Renewal Theory. Methuen, London, 1962.
[7] J. D. Esary, A. W. Marshall, and F. Proschan. Shock Models and Wear Processes. The Annals of Probability, 1(4):627–649, 1973.
[8] F. S. Hillier and G. J. Lieberman. Introduction To Operations Research. McGraw-Hill, New York, 10th edition, 2015.
[9] R. S. Maier and C. A. O’Cinneide. A Closure Characterisation of Phase-Type Distributions. Journal of Applied Probability, 29(1):92–103, 1992.
[10] D. Montoro-Cazorla, R. PérezOcón, and M. C. Segovia. Shock and wear models under policy N using phase-type distributions. Applied Mathematical Modelling, 33:543–554, 2009.
[11] M. F. Neuts. Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. The Johns Hopkins University Press, Baltimore, 1981.
[12] B. F. Nielsen. Lecture notes on phase–type distributions for 02407 Stochastic Processes, 2017.
[13] S.H. Sheu, C.C. Chang, Z. G. Zhang, and Y.H. Chien. A note on replacement policy for a system subject to non-homogeneous pure birth shocks. European Journal of Operational Research, 216:503–508, 2012.
[14] H. M. Taylor and S. Karlin. An Introduction to Stochastic Modeling. Academic Press, Cambridge, Massachusetts, 3rd edition, 1998.
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU201900384en_US