Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 關於一個秤重問題的探討
The study about a weighing problem
作者 王昱翔
Wang, Yu-Hsiang
貢獻者 李陽明
王昱翔
Wang, Yu-Hsiang
關鍵詞 秤重問題
決策樹
數學歸納法
Weighing problem
Decision tree
Mathematical Induction
日期 2019
上傳時間 7-Aug-2019 16:35:45 (UTC+8)
摘要 本文欲探討,在已知一枚硬幣重量有誤而其他硬幣重量皆相同的情況之下,利用無砝碼天平秤n次,最多可以從多少枚硬幣中找到重量有誤的那一枚硬幣並且知道是較輕還是較重。第二章分別討論「已知一枚硬幣較重」、「已知一枚硬幣較輕」和「已知一枚硬幣重量有誤但不知道是較輕還是較重」三種情況,利用決策樹和數學歸納法證明之,第三章給予實際操作的過程。
This article wants to find : under the condition that one coin is wrong in weight and the other coins are the same weight, using a scale without weight, what is the maximum number of coins that we can find from the coin with the wrong weight ,and know that it is heavier or lighter ? In chapter 2, we will discuss the following three cases : there is a heavier coin, there is a lighter coin, and there is a coin of wrong weight but not sure the coin is heavier or lighter, separately. we will use the decision tree and mathematical induction to prove them. In chapter 3, we will show the practical process.
參考文獻 中文文獻
(1)謝維馨,分類工具(3)─決策樹(Decision Tree),上網日期2018年3月1日,檢自:http://yourgene.pixnet.net/blog/post/118211190-%E5%88%86%E9%A1%9E%E5%B7%A5%E5%85%B7(3)%E2%94%80%E6%B1%BA%E7%AD%96%E6%A8%B9%EF%BC%88decision-tree%EF%BC%89。
(2)CH.Tseng,決策樹 Decision trees,上網日期2017年2月10日,檢自:https://chtseng.wordpress.com/2017/02/10/%E6%B1%BA%E7%AD%96%E6%A8%B9-decision-trees/。
(3)林宥廷(2014),有關三源數列的探討,國立政治大學,應用數學系碩士班,臺北市。
英文文獻
(1)Alan Tucker(1994),Applied Combinatorics(5th edition),John wiley&Sons Inc.
(2)C.L.Liu(2000),Introduction to Combinatorial Mathematics(International editions 2000),McGraw-Hill.
(3)Susanna S.Epp(2003),Discrete Mathematics with Applications,Cengage Learning.
描述 碩士
國立政治大學
應用數學系
105751006
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0105751006
資料類型 thesis
dc.contributor.advisor 李陽明zh_TW
dc.contributor.author (Authors) 王昱翔zh_TW
dc.contributor.author (Authors) Wang, Yu-Hsiangen_US
dc.creator (作者) 王昱翔zh_TW
dc.creator (作者) Wang, Yu-Hsiangen_US
dc.date (日期) 2019en_US
dc.date.accessioned 7-Aug-2019 16:35:45 (UTC+8)-
dc.date.available 7-Aug-2019 16:35:45 (UTC+8)-
dc.date.issued (上傳時間) 7-Aug-2019 16:35:45 (UTC+8)-
dc.identifier (Other Identifiers) G0105751006en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/124870-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學系zh_TW
dc.description (描述) 105751006zh_TW
dc.description.abstract (摘要) 本文欲探討,在已知一枚硬幣重量有誤而其他硬幣重量皆相同的情況之下,利用無砝碼天平秤n次,最多可以從多少枚硬幣中找到重量有誤的那一枚硬幣並且知道是較輕還是較重。第二章分別討論「已知一枚硬幣較重」、「已知一枚硬幣較輕」和「已知一枚硬幣重量有誤但不知道是較輕還是較重」三種情況,利用決策樹和數學歸納法證明之,第三章給予實際操作的過程。zh_TW
dc.description.abstract (摘要) This article wants to find : under the condition that one coin is wrong in weight and the other coins are the same weight, using a scale without weight, what is the maximum number of coins that we can find from the coin with the wrong weight ,and know that it is heavier or lighter ? In chapter 2, we will discuss the following three cases : there is a heavier coin, there is a lighter coin, and there is a coin of wrong weight but not sure the coin is heavier or lighter, separately. we will use the decision tree and mathematical induction to prove them. In chapter 3, we will show the practical process.en_US
dc.description.tableofcontents 第一章 緒論 1
1.1 前言 1
1.2 研究方法 2
1.3 論文架構 3
第二章 實證 4
2.1 已知一枚硬幣較重 4
2.2 已知一枚硬幣較輕 6
2.3 一枚硬幣重量有誤但不知其較重或較輕 8
2.4 固定秤法 13
第三章 實例 14
3.1 動態秤法 14
3.2 固定秤法 17
第四章 結論與展望 21
參考文獻 24
zh_TW
dc.format.extent 1038841 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0105751006en_US
dc.subject (關鍵詞) 秤重問題zh_TW
dc.subject (關鍵詞) 決策樹zh_TW
dc.subject (關鍵詞) 數學歸納法zh_TW
dc.subject (關鍵詞) Weighing problemen_US
dc.subject (關鍵詞) Decision treeen_US
dc.subject (關鍵詞) Mathematical Inductionen_US
dc.title (題名) 關於一個秤重問題的探討zh_TW
dc.title (題名) The study about a weighing problemen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 中文文獻
(1)謝維馨,分類工具(3)─決策樹(Decision Tree),上網日期2018年3月1日,檢自:http://yourgene.pixnet.net/blog/post/118211190-%E5%88%86%E9%A1%9E%E5%B7%A5%E5%85%B7(3)%E2%94%80%E6%B1%BA%E7%AD%96%E6%A8%B9%EF%BC%88decision-tree%EF%BC%89。
(2)CH.Tseng,決策樹 Decision trees,上網日期2017年2月10日,檢自:https://chtseng.wordpress.com/2017/02/10/%E6%B1%BA%E7%AD%96%E6%A8%B9-decision-trees/。
(3)林宥廷(2014),有關三源數列的探討,國立政治大學,應用數學系碩士班,臺北市。
英文文獻
(1)Alan Tucker(1994),Applied Combinatorics(5th edition),John wiley&Sons Inc.
(2)C.L.Liu(2000),Introduction to Combinatorial Mathematics(International editions 2000),McGraw-Hill.
(3)Susanna S.Epp(2003),Discrete Mathematics with Applications,Cengage Learning.
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU201900333en_US