學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

題名 基於資料融合建置物件化3D LOD2建物模型之研究
The Study on the Establishment of 3D LOD2 Objectivization Building Models based on Data Fusion
作者 林岑燕
Lin, Tsen-Yann
貢獻者 邱式鴻
Chio, Shih-Hong
林岑燕
Lin, Tsen-Yann
關鍵詞 資料融合
三角網
紋理敷貼
矩形包裝
三維建物模型
WebGL
Data Fusion
Triangulation Network
Texture Mapping
Rectangle Packing
3D Building Model
WebGL
日期 2019
上傳時間 7-Aug-2019 16:45:59 (UTC+8)
摘要 隨著科技發展,二維空間資訊系統已經往三維模式邁進以呈現出更擬真的世界樣貌,加上智慧城市概念興起,建物又是城市內最具代表性的象徵,使得當今許多研究都開始著手三維建物模型的自動化建置;然而,三維建物模型的建置往往需要耗費大量時間成本與資金,加上立體建物要匯入三維地理資訊平台的資料量較傳統二維圖資大許多,所以三維模型資料的壓縮與簡化成為十分重要的課題;而且目前已建置的三維地理資訊平台之應用大多為視覺化展示而已,無法進行更深入的三維空間資訊應用分析;另外,三維地理資訊系統平台在開發及應用上常會面臨建置及營運成本昂貴、不同資料型態轉換的困難及介面不夠完善等問題;最後,伴隨網際網路與手機的成熟,三維地理資訊系統也逐漸向以具有網路,又或是向有搭載網路的行動裝置為基礎發展,意即3D Web GIS為當今的趨勢潮流。
故為因應日增的三維建物模型使用需求的發展趨勢,並為避免產製龐大數量的三維建物模型時耗費過多的時間與成本;此外,為避免三維地理資訊系統侷限於視覺化展示的應用以及因應逐漸往搭載網路的行動裝置發展的趨勢,並同時考量面對大量3D資料的即時串流時易於發佈、網頁相容性、降低延遲及資料傳輸量等各個面向以及克服三維地理資訊系統平台在開發及應用上所面臨的問題,在提升效率與效益的前提下,本研究希望透過資料融合的概念並利用各項資料特性的優勢,結合建物輪廓線、空載光達點雲、航空攝影的垂直和傾斜影像及數值高程模型等資料,提供一套物件化的新方法,較人工而言更為自動化且低成本產製低資料量的大規模三維LOD2建物模型;同時使用開放原始碼的免費開源軟體,且具有WebGL技術基礎的平台上使用3D標準語言開發圖台,匯入一定規格標準的三維建物模型,以利所創建的三維建物地理資訊平台進行後續應用與分析。
As technology advances, the two-dimension geographic information system has transformed into three dimensions to present a more realistic world appearance. Also, the concept of “Smart City” has been presented and building is the most representative symbol in the city, which makes many science fields start to research in the automatic production of 3D building models nowadays. However, the reconstruction of 3D building models often takes a lot of time and a large amount of cost. Besides, the data volume of 3D building models imported into the 3D GIS platform is much larger than the traditional 2D data. Therefore, the compression and simplification of 3D building model become an important research subject. Moreover, the application of the 3D GIS platform established before is mainly confined to visualization purposes, which can’t carry out the further application and analysis of 3D spatial information. What’s more, the development and application of 3D GIS platform often face several problems, such as expensive cost of establishment and maintenance, difficulty of different data type conversion, and imperfect user interface. Last but not least, with the maturity of internet and mobile phones, the 3D GIS gradually develops toward the base of network or the mobile devices equipped with internet, which means 3D Web GIS becomes the trend nowadays.
As a result, to cope with the increasing demand for the use of 3D building models, to avoid the waste of time and cost to produce a large quantity of 3D building models, and to prevent the 3D GIS application from limiting to visual display. Besides, to response to the trend of 3D Web GIS on mobile device, to take into account several aspects, such as the real-time streaming and release of a large amount of 3D data, browser compatibility, delay reduction, data transmission volume, problem in establishment of 3D GIS platform, and to promote the efficiency. With the concept of data fusion and by making use of the advantages of different data types, this study hopes to present a new low-cost objectivization method to automatically generate low data volume 3D LOD2 building models of large area by combining building footprint, airborne LiDAR point cloud data, airborne vertical and oblique images, and DEM. What’s more, this study also hopes to establish a low-cost, open source, and WebGL-based 3D building GIS platform with standard format of 3D building models, and make use of the LOD2 building models for more application and analysis.
參考文獻 一、中文參考文獻
王明志、曾正雄、陳冠廷,2009,「地理空間資訊製圖與建模研究」,『地圖』,第十九期:97-116。
江渾欽、馮怡婕,2012,「地籍建物三維資料流通架構建立之研究」,『 臺灣土地研究』,15(1):127-155。
朱展毅、饒見有,2010,「以向量式遮蔽偵測為基礎利用空載傾斜攝影進行自動化牆面紋理貼圖」,『航測及遙測學刊』,15(4):325-341。
成晨光,2010,「以網際網路三維地理資訊系統為基礎之仿真數碼城市在不動產市場之應用」,成功大學測量及空間資訊學系碩士論文:台南。
吳錫賢、李明儒、姜興華、鄭宏逵,2017,「三維空間資訊技術之發展與應用」,『中華技術』,114期:72-89。
林迪詒、謝嘉聲,2017,「利用 SGM 和 PMVS 演算法進行 MUAV 影像密匹配之比較分析」,『航測及遙測學刊』,22(3):193-203。
武曉波、王世新、肖春生,1999,「Delaunay三角網的生成演算法研究 」,『測繪學報』,1。
洪逸舟、范姜文成、蔡岳廷,2012,「立體建物在GIS平台上的整合與挑戰」,『地理資訊系統季刊』,6(3):7-11。
陳良健、江孟璁,2009,「房屋模型面與空載影像之套合」, 『航測及遙測學刊』,14(4):255-275。
蔡富安、張智安、張桓、陳良健、陳杰宗,2013,「多尺度三維數位房屋模型建置」,『 航測及遙測學刊』,17(4):267-285。
賴彥中、陳良健、饒見有,2005,「整合光達點雲與空照影像重建三維建物模型」,『航測及遙測學刊』,10(1):27-46。
羅正方、劉正倫、李良輝、陳信安、張庭榮、林昌鑑、施錦揮,2018,「無人機傾斜攝影於三維都市模型重建之應用」,『航測及遙測學刊』,23(2):127-140。

二、外文參考文獻
Albers, B., Kada, M., & Wichmann, A., 2016, “Automatic Extraction and Regularization of Building Outlines from Airborne LiDAR Point Clouds”, International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41.
Amirebrahimi, S., Rajabifard, A., Sabri, S., & Mendis, P., 2016, “Spatial Information in Support of 3D Flood Damage Assessment of Buildings at Micro Level: A Review”, ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 4(2).
Anttonen, M., & Salminen, A., 2011, “Building 3D WebGL Applications”, Tampere University of Technology Department of Software Systems Report, 16.
Arefi, H., & Mayer, H., 2008, “Levels of Detail in 3D Building Reconstruction from LiDAR Data”, International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 37: B3.
Atazadeh, B., Kalantari, M., Rajabifard, A., Ho, S., & Ngo, T., 2017, “Building Information Modelling for High‐Rise Land Administration”, Transactions in GIS, 21(1): 91-113.
Batty, M., Chapman, D., Evans, S., Haklay, M., Kueppers, S., Shiode, N., Smith, A & Torrens, P. M., 2000, “Visualizing the City: Communicating Urban Design to Planners and Decision-Makers”, CASA Working Papers 32, University College London, Centre for Advanced Spatial Analysis, London, UK.
Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., & Çöltekin, A., 2015, “Applications of 3D City Models: State of the Art Review”, ISPRS International Journal of Geo-Information, 4(4): 2842-2889.
Biljecki, F., Ledoux, H., & Stoter, J., 2016, “Generation of Multi-LOD 3D City Models in CityGML with the Procedural Modelling Engine Random3Dcity”, ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 3(4).
Brown, D. C., 1968, “Advanced Methods for the Calibration of Metric Cameras”, U.S. Army Engineer Topographic Laboratories Final Report under Contract DA-44-009-AMC-1457 (X), Fort Belvoir, Virginia.
Chaturvedi, K., 2014, Web Based 3D Analysis and Visualization Using HTML5 and WebGL, University of Twente Faculty of Geo-Information and Earth Observation (ITC).
Cheng, L., Gong, J., Li, M., & Liu, Y., 2011, “3D Building Model Reconstruction from Multi-View Aerial Imagery and LiDAR Data”, Photogrammetric Engineering & Remote Sensing, 77(2): 125-139.
Devaux, A., Brédif, M., & Paparoditis, N., 2012, “A Web-Based 3D Mapping Application Using WebGL Allowing Interaction with Images, Point Clouds And Models”, Paper presented at the 20th International Conference on Advances in Geographic Information Systems (pp. 586-588), ACM, November.
Di Staso, U., Giovannini, L., Berti, M., Prandi, F., Cipriano, P., & De Amicis, R., 2014, “Large-Scale Residential Energy Maps: Estimation, Validation and Visualization Project SUNSHINE-Smart Urban Services for Higher Energy Efficiency”, Paper presented at the International Conference on Data Management Technologies and Applications (pp. 28-44), Springer, Cham, August.
Elberink, S. O., 2008, “Problems in Automated Building Reconstruction based on Dense Airborne Laser Scanning Data”, International Archives of Photogrammetry, Remote Sensing and Spatial Information Science, 37: B3.
Frueh, C., Sammon, R., & Zakhor, A., 2004, “Automated texture mapping of 3D city models with oblique aerial imagery”, Paper presented at the 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004. (pp. 396-403), IEEE, September.
Giovannini, L., Pezzi, S., Di Staso, U., Prandi, F., & De Amicis, R., 2014, “Large-Scale Assessment and Visualization of the Energy Performance of Buildings with Ecomaps”, Paper presented at the 3rd International Conference on Data Management Technologies and Applications (DATA 2014) (pp. 170-177), Setúbal: SCITEPRESS–Science and Technology Publications, Lda, August.
Gröger, G., Kolbe, T. H., Czerwinski, A., & Nagel, C., 2008, “OpenGIS City Geography Markup Language (CityGML) Encoding Standard”, version 1.0.0.
Gröger, G., & Plümer, L., 2012, “CityGML–Interoperable Semantic 3D City Models”, ISPRS Journal of Photogrammetry and Remote Sensing, 71: 12-33.
Grussenmeyer, P., Alby, E., Meyer, E., & Rampazzo, M., 2006, “3D Building Model as an Interface for a Web Information System. Case Study of the Pontonniers High School in Strasbourg”, Paper presented at the ISPRS Comm. V Symposium (pp. 1682-1750), September.
Guney, C., 2016, “Rethinking GIS Towards the Vision of Smart Cities Through CityGML”, International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42.
Huang, E., & Korf, R. E., 2013, “Optimal rectangle packing: An absolute placement approach”, Journal of Artificial Intelligence Research, 46: 47-87.
Imahori, S., Yagiura, M., & Nagamochi, H., 2007, “Practical algorithms for two-dimensional packing”, Handbook of Approximation Algorithms and Metaheuristics. Chapman & Hall/CRC Computer & Information Science Series, 13.
Jaillot, V., Pedrinis, F., Servigne, S., & Gesquière, G., 2017, “A Generic Approach for Sunlight and Shadow Impact Computation on Large City Models”, Paper presented at the 25th International Conference on Computer Graphics, Visualization and Computer Vision 2017 (pp. 10-pages), May.
Jylänki, J., 2010, “A thousand ways to pack the bin-a practical approach to two-dimensional rectangle bin packing”, retrived from http://clb. demon. fi/files/RectangleBinPack. pdf.
Kopeć, A., Bała, J., & Pięta, A., 2015, “WebGL based visualisation and analysis of stratigraphic data for the purposes of the mining industry”, Procedia Computer Science, 51: 2869-2877.
Korf, R. E., 2003, “Optimal Rectangle Packing: Initial Results”, Paper presented at the International Conference on ICAPS (pp. 287-295), June.
Krooks, A., Kahkonen, J., Lehto, L., Latvala, P., Karjalainen, M., & Honkavaara, E., 2014, “WebGL Visualisation of 3D Environmental Models Based on Finnish Open Geospatial Data Sets”, International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.
Ledoux, H., & Meijers, M., 2011, “Topologically Consistent 3D City Models Obtained by Extrusion”, International Journal of Geographical Information Science, 25(4): 557-574.
Lodi, A., 1999, Algorithms for two-dimensional bin packing and assignment problems, Doktorarbeit, DEIS, Universita di Bologna, 16.
Lodi, A., Martello, S., & Vigo, D., 2002, “Recent advances on two-dimensional bin packing problems”, Discrete Applied Mathematics, 123(1-3): 379-396.
Löwner, M. O., Benner, J., Gröger, G., & Häfele, K. H., 2013, “New Concepts for Structuring 3D City Models–An Extended Level of Detail Concept for CityGML Buildings”, Paper presented at the International Conference on Computational Science and Its Applications (pp. 466-480), Springer, Berlin, Heidelberg, June.
Mahfoudh, S. S., Bellalouna, M., & Horchani, L., 2018, “Solving CSS-Sprite Packing Problem Using a Transformation to the Probabilistic Non-oriented Bin Packing Problem”, Paper presented at the International Conference on Computational Science (pp. 561-573), Springer, Cham, June.
Marszałkowski, J., Mizgajski, J., Mokwa, D. and Drozdowski, M., 2016, “Analysis and solution of CSS-sprite packing problem”, ACM Transactions on the Web (TWEB), 10(1): p.1.
Mumford-Valenzuela, C. L., Vick, J., & Wang, P. Y., 2003, “Heuristics for large strip packing problems with guillotine patterns: An empirical study.” pp. 501-522 in Metaheuristics: computer decision-making, Springer, Boston, MA.
Navratil, G., & Unger, E. M., 2013, “Requirements of 3D Cadastres for Height Systems”, Computers, Environment and Urban Systems, 38: 11-20.
Perdeck, M., 2010, ASP. NET Site Performance Secrets: Simple and Proven Techniques to Quickly Speed Up Your ASP. NET Web Site, Packt Publishing Ltd.
Perdeck, M., 2011, “Fast optimizing rectangle packing algorithm for building css sprites”.
Prieto, I., & Izkara, J. L., 2012, “Visualization of 3D City Models on Mobile Devices”, Paper presented at the 17th International Conference on 3D Web Technology (pp. 101-104), ACM, August.
Ruppert, J., 1995, “A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation”, Journal of Algorithms, 18(3): 548-585.
Schwalbe, E., 2004, “3D Building Model Generation from Airborne Laserscanner Data by Straight Line Detection in Specific Orthogonal Projections”, International Archives of Photogrammetry and Remote Sensing, 35(3): 249-254.
Schwalbe, E., Maas, H. G., & Seidel, F., 2005, “3D Building Model Generation from Airborne Laser Scanner Data Using 2D GIS Data and Orthogonal Point Cloud Projections”, Proceedings of ISPRS WG III/3, III/4, 3: 12-14.
Setiawan, F. A., & Rau, J-Y., 2017, “Application of photo-realistic 3D model in web-based open source gis platform”, Paper presented at the 38th Asian Conference on Remote Sensing - Space Applications: Touching Human Lives, ACRS 2017, New Delhi, India.
Shewchuk, J. R., 1996, “Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator.” pp. 203-222 in Applied Computational Geometry towards Geometric Engineering, Springer, Berlin, Heidelberg.
Shewchuk, J. R., 2002, “Delaunay Refinement Algorithms for Triangular Mesh Generation”, Computational geometry, 22(1-3): 21-74.
Shiode, N., 2000, “3D Urban Models: Recent Developments in The Digital Modelling of Urban Environments in Three-Dimensions”, GeoJournal, 52(3): 263-269.
Suveg, I., & Vosselman, G., 2002, “Automatic 3D Building Reconstruction”, Paper presented at the Three-Dimensional Image Capture and Applications V (Vol. 4661, pp. 59-70), International Society for Optics and Photonics, March.
Thompson, E. M., Greenhalgh, P., Muldoon-Smith, K., Charlton, J., & Dolník, M., 2016, “Planners in the Future City: Using City Information Modelling to Support Planners as Market Actors”, Urban Planning, 1(1): 79-94.
Toschi, I., Nocerino, E., Remondino, F., Revolti, A., Soria, G., & Piffer, S., 2017, “Geospatial Data Processing for 3D City Model Generation, Management and Visualization”, International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42.
Voronoi, G., 1908, “Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs”, Journal für die reine und angewandte Mathematik, 134: 198-287.
Wolf, P. R., Dewitt, B. A., & Wilkinson, B. E., 2014, Elements of Photogrammetry: with Applications in GIS (Vol. 4), New York: McGraw-Hill, pp. 334-335.
Xu, Z., Zhang, Y., & Xu, X., 2016, “3D Visualization for Building Information Models based upon IFC and WebGL Integration”, Multimedia Tools and Applications, 75(24): 17421-17441.
Zlatanova, S., Rahman, A., & Pilouk, M., 2002, “3D GIS: Current Status and Perspectives”, International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34(4): 66-71.
描述 碩士
國立政治大學
地政學系
107257001
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0107257001
資料類型 thesis
dc.contributor.advisor 邱式鴻zh_TW
dc.contributor.advisor Chio, Shih-Hongen_US
dc.contributor.author (Authors) 林岑燕zh_TW
dc.contributor.author (Authors) Lin, Tsen-Yannen_US
dc.creator (作者) 林岑燕zh_TW
dc.creator (作者) Lin, Tsen-Yannen_US
dc.date (日期) 2019en_US
dc.date.accessioned 7-Aug-2019 16:45:59 (UTC+8)-
dc.date.available 7-Aug-2019 16:45:59 (UTC+8)-
dc.date.issued (上傳時間) 7-Aug-2019 16:45:59 (UTC+8)-
dc.identifier (Other Identifiers) G0107257001en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/124925-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 地政學系zh_TW
dc.description (描述) 107257001zh_TW
dc.description.abstract (摘要) 隨著科技發展,二維空間資訊系統已經往三維模式邁進以呈現出更擬真的世界樣貌,加上智慧城市概念興起,建物又是城市內最具代表性的象徵,使得當今許多研究都開始著手三維建物模型的自動化建置;然而,三維建物模型的建置往往需要耗費大量時間成本與資金,加上立體建物要匯入三維地理資訊平台的資料量較傳統二維圖資大許多,所以三維模型資料的壓縮與簡化成為十分重要的課題;而且目前已建置的三維地理資訊平台之應用大多為視覺化展示而已,無法進行更深入的三維空間資訊應用分析;另外,三維地理資訊系統平台在開發及應用上常會面臨建置及營運成本昂貴、不同資料型態轉換的困難及介面不夠完善等問題;最後,伴隨網際網路與手機的成熟,三維地理資訊系統也逐漸向以具有網路,又或是向有搭載網路的行動裝置為基礎發展,意即3D Web GIS為當今的趨勢潮流。
故為因應日增的三維建物模型使用需求的發展趨勢,並為避免產製龐大數量的三維建物模型時耗費過多的時間與成本;此外,為避免三維地理資訊系統侷限於視覺化展示的應用以及因應逐漸往搭載網路的行動裝置發展的趨勢,並同時考量面對大量3D資料的即時串流時易於發佈、網頁相容性、降低延遲及資料傳輸量等各個面向以及克服三維地理資訊系統平台在開發及應用上所面臨的問題,在提升效率與效益的前提下,本研究希望透過資料融合的概念並利用各項資料特性的優勢,結合建物輪廓線、空載光達點雲、航空攝影的垂直和傾斜影像及數值高程模型等資料,提供一套物件化的新方法,較人工而言更為自動化且低成本產製低資料量的大規模三維LOD2建物模型;同時使用開放原始碼的免費開源軟體,且具有WebGL技術基礎的平台上使用3D標準語言開發圖台,匯入一定規格標準的三維建物模型,以利所創建的三維建物地理資訊平台進行後續應用與分析。
zh_TW
dc.description.abstract (摘要) As technology advances, the two-dimension geographic information system has transformed into three dimensions to present a more realistic world appearance. Also, the concept of “Smart City” has been presented and building is the most representative symbol in the city, which makes many science fields start to research in the automatic production of 3D building models nowadays. However, the reconstruction of 3D building models often takes a lot of time and a large amount of cost. Besides, the data volume of 3D building models imported into the 3D GIS platform is much larger than the traditional 2D data. Therefore, the compression and simplification of 3D building model become an important research subject. Moreover, the application of the 3D GIS platform established before is mainly confined to visualization purposes, which can’t carry out the further application and analysis of 3D spatial information. What’s more, the development and application of 3D GIS platform often face several problems, such as expensive cost of establishment and maintenance, difficulty of different data type conversion, and imperfect user interface. Last but not least, with the maturity of internet and mobile phones, the 3D GIS gradually develops toward the base of network or the mobile devices equipped with internet, which means 3D Web GIS becomes the trend nowadays.
As a result, to cope with the increasing demand for the use of 3D building models, to avoid the waste of time and cost to produce a large quantity of 3D building models, and to prevent the 3D GIS application from limiting to visual display. Besides, to response to the trend of 3D Web GIS on mobile device, to take into account several aspects, such as the real-time streaming and release of a large amount of 3D data, browser compatibility, delay reduction, data transmission volume, problem in establishment of 3D GIS platform, and to promote the efficiency. With the concept of data fusion and by making use of the advantages of different data types, this study hopes to present a new low-cost objectivization method to automatically generate low data volume 3D LOD2 building models of large area by combining building footprint, airborne LiDAR point cloud data, airborne vertical and oblique images, and DEM. What’s more, this study also hopes to establish a low-cost, open source, and WebGL-based 3D building GIS platform with standard format of 3D building models, and make use of the LOD2 building models for more application and analysis.
en_US
dc.description.tableofcontents 第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 4
第三節 論文架構 5
第二章 文獻回顧 7
第一節 三維建物模型 7
第二節 三維建物模型之應用與分析 16
第三節 3D Web GIS 20
第三章 研究方法與理論基礎 25
第一節 研究方法 25
第二節 理論基礎 38
第四章 研究成果與分析 61
第一節 研究區域、資料及工具 62
第二節 光達點雲萃取成果與分析 68
第三節 三維LOD1建物模型成果與分析 73
第四節 三維LOD2建物模型成果與分析 75
第五節 三維LOD2建物模型之物件化成果與分析 85
第六節 物件化建物模型於WebGL平台之成果與分析 93
第五章 結論與建議 101
第一節 結論 101
第二節 建議 104
參考文獻 105
zh_TW
dc.format.extent 9589703 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0107257001en_US
dc.subject (關鍵詞) 資料融合zh_TW
dc.subject (關鍵詞) 三角網zh_TW
dc.subject (關鍵詞) 紋理敷貼zh_TW
dc.subject (關鍵詞) 矩形包裝zh_TW
dc.subject (關鍵詞) 三維建物模型zh_TW
dc.subject (關鍵詞) WebGLzh_TW
dc.subject (關鍵詞) Data Fusionen_US
dc.subject (關鍵詞) Triangulation Networken_US
dc.subject (關鍵詞) Texture Mappingen_US
dc.subject (關鍵詞) Rectangle Packingen_US
dc.subject (關鍵詞) 3D Building Modelen_US
dc.subject (關鍵詞) WebGLen_US
dc.title (題名) 基於資料融合建置物件化3D LOD2建物模型之研究zh_TW
dc.title (題名) The Study on the Establishment of 3D LOD2 Objectivization Building Models based on Data Fusionen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 一、中文參考文獻
王明志、曾正雄、陳冠廷,2009,「地理空間資訊製圖與建模研究」,『地圖』,第十九期:97-116。
江渾欽、馮怡婕,2012,「地籍建物三維資料流通架構建立之研究」,『 臺灣土地研究』,15(1):127-155。
朱展毅、饒見有,2010,「以向量式遮蔽偵測為基礎利用空載傾斜攝影進行自動化牆面紋理貼圖」,『航測及遙測學刊』,15(4):325-341。
成晨光,2010,「以網際網路三維地理資訊系統為基礎之仿真數碼城市在不動產市場之應用」,成功大學測量及空間資訊學系碩士論文:台南。
吳錫賢、李明儒、姜興華、鄭宏逵,2017,「三維空間資訊技術之發展與應用」,『中華技術』,114期:72-89。
林迪詒、謝嘉聲,2017,「利用 SGM 和 PMVS 演算法進行 MUAV 影像密匹配之比較分析」,『航測及遙測學刊』,22(3):193-203。
武曉波、王世新、肖春生,1999,「Delaunay三角網的生成演算法研究 」,『測繪學報』,1。
洪逸舟、范姜文成、蔡岳廷,2012,「立體建物在GIS平台上的整合與挑戰」,『地理資訊系統季刊』,6(3):7-11。
陳良健、江孟璁,2009,「房屋模型面與空載影像之套合」, 『航測及遙測學刊』,14(4):255-275。
蔡富安、張智安、張桓、陳良健、陳杰宗,2013,「多尺度三維數位房屋模型建置」,『 航測及遙測學刊』,17(4):267-285。
賴彥中、陳良健、饒見有,2005,「整合光達點雲與空照影像重建三維建物模型」,『航測及遙測學刊』,10(1):27-46。
羅正方、劉正倫、李良輝、陳信安、張庭榮、林昌鑑、施錦揮,2018,「無人機傾斜攝影於三維都市模型重建之應用」,『航測及遙測學刊』,23(2):127-140。

二、外文參考文獻
Albers, B., Kada, M., & Wichmann, A., 2016, “Automatic Extraction and Regularization of Building Outlines from Airborne LiDAR Point Clouds”, International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41.
Amirebrahimi, S., Rajabifard, A., Sabri, S., & Mendis, P., 2016, “Spatial Information in Support of 3D Flood Damage Assessment of Buildings at Micro Level: A Review”, ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 4(2).
Anttonen, M., & Salminen, A., 2011, “Building 3D WebGL Applications”, Tampere University of Technology Department of Software Systems Report, 16.
Arefi, H., & Mayer, H., 2008, “Levels of Detail in 3D Building Reconstruction from LiDAR Data”, International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 37: B3.
Atazadeh, B., Kalantari, M., Rajabifard, A., Ho, S., & Ngo, T., 2017, “Building Information Modelling for High‐Rise Land Administration”, Transactions in GIS, 21(1): 91-113.
Batty, M., Chapman, D., Evans, S., Haklay, M., Kueppers, S., Shiode, N., Smith, A & Torrens, P. M., 2000, “Visualizing the City: Communicating Urban Design to Planners and Decision-Makers”, CASA Working Papers 32, University College London, Centre for Advanced Spatial Analysis, London, UK.
Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., & Çöltekin, A., 2015, “Applications of 3D City Models: State of the Art Review”, ISPRS International Journal of Geo-Information, 4(4): 2842-2889.
Biljecki, F., Ledoux, H., & Stoter, J., 2016, “Generation of Multi-LOD 3D City Models in CityGML with the Procedural Modelling Engine Random3Dcity”, ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 3(4).
Brown, D. C., 1968, “Advanced Methods for the Calibration of Metric Cameras”, U.S. Army Engineer Topographic Laboratories Final Report under Contract DA-44-009-AMC-1457 (X), Fort Belvoir, Virginia.
Chaturvedi, K., 2014, Web Based 3D Analysis and Visualization Using HTML5 and WebGL, University of Twente Faculty of Geo-Information and Earth Observation (ITC).
Cheng, L., Gong, J., Li, M., & Liu, Y., 2011, “3D Building Model Reconstruction from Multi-View Aerial Imagery and LiDAR Data”, Photogrammetric Engineering & Remote Sensing, 77(2): 125-139.
Devaux, A., Brédif, M., & Paparoditis, N., 2012, “A Web-Based 3D Mapping Application Using WebGL Allowing Interaction with Images, Point Clouds And Models”, Paper presented at the 20th International Conference on Advances in Geographic Information Systems (pp. 586-588), ACM, November.
Di Staso, U., Giovannini, L., Berti, M., Prandi, F., Cipriano, P., & De Amicis, R., 2014, “Large-Scale Residential Energy Maps: Estimation, Validation and Visualization Project SUNSHINE-Smart Urban Services for Higher Energy Efficiency”, Paper presented at the International Conference on Data Management Technologies and Applications (pp. 28-44), Springer, Cham, August.
Elberink, S. O., 2008, “Problems in Automated Building Reconstruction based on Dense Airborne Laser Scanning Data”, International Archives of Photogrammetry, Remote Sensing and Spatial Information Science, 37: B3.
Frueh, C., Sammon, R., & Zakhor, A., 2004, “Automated texture mapping of 3D city models with oblique aerial imagery”, Paper presented at the 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004. (pp. 396-403), IEEE, September.
Giovannini, L., Pezzi, S., Di Staso, U., Prandi, F., & De Amicis, R., 2014, “Large-Scale Assessment and Visualization of the Energy Performance of Buildings with Ecomaps”, Paper presented at the 3rd International Conference on Data Management Technologies and Applications (DATA 2014) (pp. 170-177), Setúbal: SCITEPRESS–Science and Technology Publications, Lda, August.
Gröger, G., Kolbe, T. H., Czerwinski, A., & Nagel, C., 2008, “OpenGIS City Geography Markup Language (CityGML) Encoding Standard”, version 1.0.0.
Gröger, G., & Plümer, L., 2012, “CityGML–Interoperable Semantic 3D City Models”, ISPRS Journal of Photogrammetry and Remote Sensing, 71: 12-33.
Grussenmeyer, P., Alby, E., Meyer, E., & Rampazzo, M., 2006, “3D Building Model as an Interface for a Web Information System. Case Study of the Pontonniers High School in Strasbourg”, Paper presented at the ISPRS Comm. V Symposium (pp. 1682-1750), September.
Guney, C., 2016, “Rethinking GIS Towards the Vision of Smart Cities Through CityGML”, International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42.
Huang, E., & Korf, R. E., 2013, “Optimal rectangle packing: An absolute placement approach”, Journal of Artificial Intelligence Research, 46: 47-87.
Imahori, S., Yagiura, M., & Nagamochi, H., 2007, “Practical algorithms for two-dimensional packing”, Handbook of Approximation Algorithms and Metaheuristics. Chapman & Hall/CRC Computer & Information Science Series, 13.
Jaillot, V., Pedrinis, F., Servigne, S., & Gesquière, G., 2017, “A Generic Approach for Sunlight and Shadow Impact Computation on Large City Models”, Paper presented at the 25th International Conference on Computer Graphics, Visualization and Computer Vision 2017 (pp. 10-pages), May.
Jylänki, J., 2010, “A thousand ways to pack the bin-a practical approach to two-dimensional rectangle bin packing”, retrived from http://clb. demon. fi/files/RectangleBinPack. pdf.
Kopeć, A., Bała, J., & Pięta, A., 2015, “WebGL based visualisation and analysis of stratigraphic data for the purposes of the mining industry”, Procedia Computer Science, 51: 2869-2877.
Korf, R. E., 2003, “Optimal Rectangle Packing: Initial Results”, Paper presented at the International Conference on ICAPS (pp. 287-295), June.
Krooks, A., Kahkonen, J., Lehto, L., Latvala, P., Karjalainen, M., & Honkavaara, E., 2014, “WebGL Visualisation of 3D Environmental Models Based on Finnish Open Geospatial Data Sets”, International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.
Ledoux, H., & Meijers, M., 2011, “Topologically Consistent 3D City Models Obtained by Extrusion”, International Journal of Geographical Information Science, 25(4): 557-574.
Lodi, A., 1999, Algorithms for two-dimensional bin packing and assignment problems, Doktorarbeit, DEIS, Universita di Bologna, 16.
Lodi, A., Martello, S., & Vigo, D., 2002, “Recent advances on two-dimensional bin packing problems”, Discrete Applied Mathematics, 123(1-3): 379-396.
Löwner, M. O., Benner, J., Gröger, G., & Häfele, K. H., 2013, “New Concepts for Structuring 3D City Models–An Extended Level of Detail Concept for CityGML Buildings”, Paper presented at the International Conference on Computational Science and Its Applications (pp. 466-480), Springer, Berlin, Heidelberg, June.
Mahfoudh, S. S., Bellalouna, M., & Horchani, L., 2018, “Solving CSS-Sprite Packing Problem Using a Transformation to the Probabilistic Non-oriented Bin Packing Problem”, Paper presented at the International Conference on Computational Science (pp. 561-573), Springer, Cham, June.
Marszałkowski, J., Mizgajski, J., Mokwa, D. and Drozdowski, M., 2016, “Analysis and solution of CSS-sprite packing problem”, ACM Transactions on the Web (TWEB), 10(1): p.1.
Mumford-Valenzuela, C. L., Vick, J., & Wang, P. Y., 2003, “Heuristics for large strip packing problems with guillotine patterns: An empirical study.” pp. 501-522 in Metaheuristics: computer decision-making, Springer, Boston, MA.
Navratil, G., & Unger, E. M., 2013, “Requirements of 3D Cadastres for Height Systems”, Computers, Environment and Urban Systems, 38: 11-20.
Perdeck, M., 2010, ASP. NET Site Performance Secrets: Simple and Proven Techniques to Quickly Speed Up Your ASP. NET Web Site, Packt Publishing Ltd.
Perdeck, M., 2011, “Fast optimizing rectangle packing algorithm for building css sprites”.
Prieto, I., & Izkara, J. L., 2012, “Visualization of 3D City Models on Mobile Devices”, Paper presented at the 17th International Conference on 3D Web Technology (pp. 101-104), ACM, August.
Ruppert, J., 1995, “A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation”, Journal of Algorithms, 18(3): 548-585.
Schwalbe, E., 2004, “3D Building Model Generation from Airborne Laserscanner Data by Straight Line Detection in Specific Orthogonal Projections”, International Archives of Photogrammetry and Remote Sensing, 35(3): 249-254.
Schwalbe, E., Maas, H. G., & Seidel, F., 2005, “3D Building Model Generation from Airborne Laser Scanner Data Using 2D GIS Data and Orthogonal Point Cloud Projections”, Proceedings of ISPRS WG III/3, III/4, 3: 12-14.
Setiawan, F. A., & Rau, J-Y., 2017, “Application of photo-realistic 3D model in web-based open source gis platform”, Paper presented at the 38th Asian Conference on Remote Sensing - Space Applications: Touching Human Lives, ACRS 2017, New Delhi, India.
Shewchuk, J. R., 1996, “Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator.” pp. 203-222 in Applied Computational Geometry towards Geometric Engineering, Springer, Berlin, Heidelberg.
Shewchuk, J. R., 2002, “Delaunay Refinement Algorithms for Triangular Mesh Generation”, Computational geometry, 22(1-3): 21-74.
Shiode, N., 2000, “3D Urban Models: Recent Developments in The Digital Modelling of Urban Environments in Three-Dimensions”, GeoJournal, 52(3): 263-269.
Suveg, I., & Vosselman, G., 2002, “Automatic 3D Building Reconstruction”, Paper presented at the Three-Dimensional Image Capture and Applications V (Vol. 4661, pp. 59-70), International Society for Optics and Photonics, March.
Thompson, E. M., Greenhalgh, P., Muldoon-Smith, K., Charlton, J., & Dolník, M., 2016, “Planners in the Future City: Using City Information Modelling to Support Planners as Market Actors”, Urban Planning, 1(1): 79-94.
Toschi, I., Nocerino, E., Remondino, F., Revolti, A., Soria, G., & Piffer, S., 2017, “Geospatial Data Processing for 3D City Model Generation, Management and Visualization”, International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42.
Voronoi, G., 1908, “Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs”, Journal für die reine und angewandte Mathematik, 134: 198-287.
Wolf, P. R., Dewitt, B. A., & Wilkinson, B. E., 2014, Elements of Photogrammetry: with Applications in GIS (Vol. 4), New York: McGraw-Hill, pp. 334-335.
Xu, Z., Zhang, Y., & Xu, X., 2016, “3D Visualization for Building Information Models based upon IFC and WebGL Integration”, Multimedia Tools and Applications, 75(24): 17421-17441.
Zlatanova, S., Rahman, A., & Pilouk, M., 2002, “3D GIS: Current Status and Perspectives”, International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34(4): 66-71.
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU201900327en_US