Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 單層學習神經網路配合多輸出節點應用於期貨預測
The Single-hidden Layer Feedforward Neural Networks with Multiple Output Nodes for Futures Forecast
作者 鄭玉婕
Jheng, Yu-Jie
貢獻者 蔡瑞煌
Tsaih, Rua-Huan
鄭玉婕
Jheng, Yu-Jie
關鍵詞 人工神經網絡
強記、 軟化與整合
混合人工智能
期貨預測
決策支持系統
Artificial Neural Network
Cramming and Softening and Integrating
Hybrid Artificial Intelligence
Futures Forecast
Decision Support System
日期 2019
上傳時間 5-Sep-2019 15:44:43 (UTC+8)
摘要   蔡,許和賴(1998)提出了一種混合人工智能(AI)方法,該方法集成了基於規則的系統和人工神經網絡(ANN)技術,用以預測標準普爾500指數期貨未來價格變化的方向。他們聲稱混合方法可以促進更可靠的智能係統的開發,以模擬專家思維和支持決策過程。
  這項研究在兩個方面與蔡,許和賴(1998)提出的混合人工智能(AI)有所不同。首先,本研究有兩個新增的狀態變量用於描述市場狀態。其次,我們使用單層前饋式神經網絡(SLFN)和強記、軟化和整合(CSI)學習算法代替推理神經網絡(RN)和反向傳播學習算法。
  實驗結果表明,所提出的具有CSI學習算法的決策支持系統可有效預測2007年至2013年7年測試期間的Non-obvious和Unobserved的資料。決策支持系統為使用者在做決策時提供建議。
  Tsaih, Hsu and Lai (1998) proposed a hybrid artificial intelligence (AI) method that integrates rule-based system techniques and artificial neural network (ANN) techniques to predict the direction of future S&P 500 index futures price changes. They claim that hybrid approaches can facilitate the development of more reliable intelligent systems to simulate expert thinking and support decision-making processes.
  This study differs from Tsaih, Hsu & Lai (1998) in two ways. First, the study has two additional state variables for the research purpose. Secondly, we use the single hidden layer feedforward neural network (SLFN) and the Cramming, Softening and Integrating (CSI) learning algorithm instead of the Reasoning Neural Networks (RN) and the Back Propagation learning algorithm.
  The empirical results show that the proposed decision support system with CSI learning algorithm is effective in predicting Non-obvious and Unobserved data during the 7-year test period from 2007 to 2013. The decision support system provides advice to the user when making decisions.
參考文獻 [1] C. Ideenlabor, “Kanon der finanziellen Allgemeinbildung – Ein Memorandum”, in Frankfurt/Main: Commerzbank AG, 2003.
[2] K. Sachse, H. Jungermann and J. Belting, “Investment risk – The perspective of individual investors”, Journal of Economic Psychology, vol. 33, no. 3, pp. 437-447, 2012.
[3] Nosić and M. Weber, “How Riskily Do I Invest? The Role of Risk Attitudes, Risk Perceptions, and Overconfidence”, Decision Analysis, vol. 7, no. 3, pp. 282-301, 2010.
[4] J. D. Schwager, “fundamental analysis, technical analysis, trading, spreads, and options”, in A complete guide to the futures markets, John Wiley & Sons, 1984.
[5] C. Park and S. Irwin, “WHAT DO WE KNOW ABOUT THE PROFITABILITY OF TECHNICAL ANALYSIS? ”, Journal of Economic Surveys, vol. 21, no. 4, pp. 786-826, 2007.
[6] J. Steidlmayer and K. Koy, Markets and market logic. Chicago: Porcupine Press, 1986.
[7] C. Yeh and C. H. Lien, “The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients”, Expert Systems with Applications, vol. 36(2), pp. 2473-2480, 2009.
[8] F. De Roon, T. Nijman and C. Veld, “Hedging Pressure Effects in Futures Markets”, The Journal of Finance, vol. 55, no. 3, pp. 1437-1456, 2000.
[9] J. de Jesús Rubio, “Stable Kalman filter and neural network for the chaotic systems identification”, Journal of the Franklin Institute, vol. 354, no. 16, pp. 7444-7462, 2017.
[10] Y. Yoon and G. Swales, “Predicting stock price performance: A neural network approach”, Proceedings of the 24th Annual Hawaii International Conference on System Sciences, Hawaii, vol. 4, pp. 156-162, 1991.
[11] R. R. Tsaih, “The softening learning procedure”, Mathematical and computer modelling, vol. 18, no. 8, pp. 61-64, 1993.
[12] R. H. Tsaih and T. C. Cheng, “A resistant learning procedure for coping with outliers”, Annals of Mathematics and Artificial Intelligence, vol. 57, no.2, pp. 161-180, 2009.
[13] C. C. Chen, Y. C. Kuo, C. H. Huang and A. P. Chen, “Applying market profile theory to forecast Taiwan Index Futures market”, Expert Systems with Applications, vol. 41, no. 10, pp. 4617-4624, 2014.
[14] T. da Costa, R. Nazário, G. Bergo, V. Sobreiro and H. Kimura, “Trading System based on the use of technical analysis: A computational experiment”, Journal of Behavioral and Experimental Finance, vol. 6, pp. 42-55, 2015.
[15] P. Heng and S. Niblock, “Trading with Tigers: A Technical Analysis of Southeast Asian Stock Index Futures”, International Economic Journal, vol. 28, no. 4, pp. 679-692, 2014.
[16] Y. Kara, M. Acar Boyacioglu and Ö. Baykan, “Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul Stock Exchange”, Expert Systems with Applications, vol. 38, no. 5, pp. 5311-5319, 2011.
[17] R. Tsaih, Y. Hsu and C. Lai, “Forecasting S&P 500 Stock Index Futures with the Hybrid AI system”, Decision Support Systems, vol. 23, no. 2, pp. 161-174, 1998.
[18] S. Knerr, L. Personnaz and G. Dreyfus, “Single-layer learning revisited: a stepwise procedure for building and training a neural network”, Neurocomputing. Heidelberg : Springer Berlin Heidelberg, 1990.
[19] R. R. Tsaih, “An explanation of reasoning neural networks”, Mathematical and Computer Modelling, vol. 28, no. 2, pp. 37-44, 1998.
[20] S. Y. Huang, F. Yu, R. H. Tsaih and Y. Huang, “Resistant learning on the envelope bulk for identifying anomalous patterns”, 2014 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 3303-3310, 2014.
[21] C. W. Lin, “A Decision Support Mechanism for Outlier Detection in the Concept Drifting Environment”, Master Thesis, MIS, National Chengchi University, Taipei, Taiwan, Retrieved from https://hdl.handle.net/11296/7q77y6, 2015.
[22] J. J. Wu, “Application of Machine Learning to Predicting the Returns of Carry Trade ”, Master Thesis, MIS, National Chengchi University, Taipei, Taiwan, Retrieved from https://hdl.handle.net/11296/8m5pu2, 2017.
[23] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy and A. Bouchachia, “A survey on concept drift adaptation”, ACM Computing Surveys, vol. 46, no. 4, pp. 1-37, 2014.
[24] T. S. Chande and S. Kroll, The new technical trader: boost your profit by plugging into the latest indicators. New York: John Wiley & Sons Inc, 1994.
[25] J. Bollinger, Bollinger on Bollinger bands. New York: McGraw-Hill, 2002.
[26] J. C. Chen, Y. Zhou and X. Wang, “Profitability of simple stationary technical trading rules with high-frequency data of Chinese Index Futures ”, Physica A: Statistical Mechanics and its Applications, vol. 492, pp.1664-1678, 2018.
[27] T. Lubnau and N. Todorova, “Trading on mean-reversion in energy futures markets ”, Energy Economics, vol. 51, pp. 312-319, 2015.
[28] A. C. Atkinson and T. C. Cheng, “Computing least trimmed squares regression with the forward search ”, Statistics and Computing, vol. 9, no. 4, pp. 251-263, 1999.
[29] S. V. Stehman, “Selecting and interpreting measures of thematic classification accuracy ”, Remote sensing of Environment, vol. 62, no. 1, pp. 77-89, 1997.
描述 碩士
國立政治大學
資訊管理學系
106356019
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0106356019
資料類型 thesis
dc.contributor.advisor 蔡瑞煌zh_TW
dc.contributor.advisor Tsaih, Rua-Huanen_US
dc.contributor.author (Authors) 鄭玉婕zh_TW
dc.contributor.author (Authors) Jheng, Yu-Jieen_US
dc.creator (作者) 鄭玉婕zh_TW
dc.creator (作者) Jheng, Yu-Jieen_US
dc.date (日期) 2019en_US
dc.date.accessioned 5-Sep-2019 15:44:43 (UTC+8)-
dc.date.available 5-Sep-2019 15:44:43 (UTC+8)-
dc.date.issued (上傳時間) 5-Sep-2019 15:44:43 (UTC+8)-
dc.identifier (Other Identifiers) G0106356019en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/125529-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊管理學系zh_TW
dc.description (描述) 106356019zh_TW
dc.description.abstract (摘要)   蔡,許和賴(1998)提出了一種混合人工智能(AI)方法,該方法集成了基於規則的系統和人工神經網絡(ANN)技術,用以預測標準普爾500指數期貨未來價格變化的方向。他們聲稱混合方法可以促進更可靠的智能係統的開發,以模擬專家思維和支持決策過程。
  這項研究在兩個方面與蔡,許和賴(1998)提出的混合人工智能(AI)有所不同。首先,本研究有兩個新增的狀態變量用於描述市場狀態。其次,我們使用單層前饋式神經網絡(SLFN)和強記、軟化和整合(CSI)學習算法代替推理神經網絡(RN)和反向傳播學習算法。
  實驗結果表明,所提出的具有CSI學習算法的決策支持系統可有效預測2007年至2013年7年測試期間的Non-obvious和Unobserved的資料。決策支持系統為使用者在做決策時提供建議。
zh_TW
dc.description.abstract (摘要)   Tsaih, Hsu and Lai (1998) proposed a hybrid artificial intelligence (AI) method that integrates rule-based system techniques and artificial neural network (ANN) techniques to predict the direction of future S&P 500 index futures price changes. They claim that hybrid approaches can facilitate the development of more reliable intelligent systems to simulate expert thinking and support decision-making processes.
  This study differs from Tsaih, Hsu & Lai (1998) in two ways. First, the study has two additional state variables for the research purpose. Secondly, we use the single hidden layer feedforward neural network (SLFN) and the Cramming, Softening and Integrating (CSI) learning algorithm instead of the Reasoning Neural Networks (RN) and the Back Propagation learning algorithm.
  The empirical results show that the proposed decision support system with CSI learning algorithm is effective in predicting Non-obvious and Unobserved data during the 7-year test period from 2007 to 2013. The decision support system provides advice to the user when making decisions.
en_US
dc.description.tableofcontents CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE REVIEW 7
2.1 The Adaptive Single-hidden Layer Feed-forward Neural Networks (ASLFN) with Multiple Output Nodes 7
2.2 The Back-Propagation Learning Algorithm Associated with SLFN with Multiple-Class Categorization Learning Goal 9
2.3 Moving Window 12
2.4 Technical Indicators 13
2.4.1 Forecast Oscillator 15
2.4.2 Forecast Moving Average 15
2.4.3 Stochastic Relative Strength Index 16
2.4.4 Bollinger Bands 17
2.5 Least Trimmed Squares (LTS) 19
2.6 The Rule-based Systems 20
2.7 The Condition L 23
CHAPTER 3 THE PROPOSED LEARNING ALGORITHM 24
CHAPTER 4 THE EXPERIMENT DESIGN OF S&P 500 INDEX FORECASTING 34
4.1 Variable Description 35
4.3 The Description of Collected Data 38
4.4 The Proposed Learning Algorithm and Implementation 42
CHAPTER 5 THE EXPERIMENT RESULT OF S&P 500 INDEX FORECASTING 44
CHAPTER 6 CONCLUSION AND FUTURE WORK 48
REFERENCE 50
APPENDIX 53
zh_TW
dc.format.extent 1439101 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0106356019en_US
dc.subject (關鍵詞) 人工神經網絡zh_TW
dc.subject (關鍵詞) 強記、 軟化與整合zh_TW
dc.subject (關鍵詞) 混合人工智能zh_TW
dc.subject (關鍵詞) 期貨預測zh_TW
dc.subject (關鍵詞) 決策支持系統zh_TW
dc.subject (關鍵詞) Artificial Neural Networken_US
dc.subject (關鍵詞) Cramming and Softening and Integratingen_US
dc.subject (關鍵詞) Hybrid Artificial Intelligenceen_US
dc.subject (關鍵詞) Futures Forecasten_US
dc.subject (關鍵詞) Decision Support Systemen_US
dc.title (題名) 單層學習神經網路配合多輸出節點應用於期貨預測zh_TW
dc.title (題名) The Single-hidden Layer Feedforward Neural Networks with Multiple Output Nodes for Futures Forecasten_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] C. Ideenlabor, “Kanon der finanziellen Allgemeinbildung – Ein Memorandum”, in Frankfurt/Main: Commerzbank AG, 2003.
[2] K. Sachse, H. Jungermann and J. Belting, “Investment risk – The perspective of individual investors”, Journal of Economic Psychology, vol. 33, no. 3, pp. 437-447, 2012.
[3] Nosić and M. Weber, “How Riskily Do I Invest? The Role of Risk Attitudes, Risk Perceptions, and Overconfidence”, Decision Analysis, vol. 7, no. 3, pp. 282-301, 2010.
[4] J. D. Schwager, “fundamental analysis, technical analysis, trading, spreads, and options”, in A complete guide to the futures markets, John Wiley & Sons, 1984.
[5] C. Park and S. Irwin, “WHAT DO WE KNOW ABOUT THE PROFITABILITY OF TECHNICAL ANALYSIS? ”, Journal of Economic Surveys, vol. 21, no. 4, pp. 786-826, 2007.
[6] J. Steidlmayer and K. Koy, Markets and market logic. Chicago: Porcupine Press, 1986.
[7] C. Yeh and C. H. Lien, “The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients”, Expert Systems with Applications, vol. 36(2), pp. 2473-2480, 2009.
[8] F. De Roon, T. Nijman and C. Veld, “Hedging Pressure Effects in Futures Markets”, The Journal of Finance, vol. 55, no. 3, pp. 1437-1456, 2000.
[9] J. de Jesús Rubio, “Stable Kalman filter and neural network for the chaotic systems identification”, Journal of the Franklin Institute, vol. 354, no. 16, pp. 7444-7462, 2017.
[10] Y. Yoon and G. Swales, “Predicting stock price performance: A neural network approach”, Proceedings of the 24th Annual Hawaii International Conference on System Sciences, Hawaii, vol. 4, pp. 156-162, 1991.
[11] R. R. Tsaih, “The softening learning procedure”, Mathematical and computer modelling, vol. 18, no. 8, pp. 61-64, 1993.
[12] R. H. Tsaih and T. C. Cheng, “A resistant learning procedure for coping with outliers”, Annals of Mathematics and Artificial Intelligence, vol. 57, no.2, pp. 161-180, 2009.
[13] C. C. Chen, Y. C. Kuo, C. H. Huang and A. P. Chen, “Applying market profile theory to forecast Taiwan Index Futures market”, Expert Systems with Applications, vol. 41, no. 10, pp. 4617-4624, 2014.
[14] T. da Costa, R. Nazário, G. Bergo, V. Sobreiro and H. Kimura, “Trading System based on the use of technical analysis: A computational experiment”, Journal of Behavioral and Experimental Finance, vol. 6, pp. 42-55, 2015.
[15] P. Heng and S. Niblock, “Trading with Tigers: A Technical Analysis of Southeast Asian Stock Index Futures”, International Economic Journal, vol. 28, no. 4, pp. 679-692, 2014.
[16] Y. Kara, M. Acar Boyacioglu and Ö. Baykan, “Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul Stock Exchange”, Expert Systems with Applications, vol. 38, no. 5, pp. 5311-5319, 2011.
[17] R. Tsaih, Y. Hsu and C. Lai, “Forecasting S&P 500 Stock Index Futures with the Hybrid AI system”, Decision Support Systems, vol. 23, no. 2, pp. 161-174, 1998.
[18] S. Knerr, L. Personnaz and G. Dreyfus, “Single-layer learning revisited: a stepwise procedure for building and training a neural network”, Neurocomputing. Heidelberg : Springer Berlin Heidelberg, 1990.
[19] R. R. Tsaih, “An explanation of reasoning neural networks”, Mathematical and Computer Modelling, vol. 28, no. 2, pp. 37-44, 1998.
[20] S. Y. Huang, F. Yu, R. H. Tsaih and Y. Huang, “Resistant learning on the envelope bulk for identifying anomalous patterns”, 2014 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 3303-3310, 2014.
[21] C. W. Lin, “A Decision Support Mechanism for Outlier Detection in the Concept Drifting Environment”, Master Thesis, MIS, National Chengchi University, Taipei, Taiwan, Retrieved from https://hdl.handle.net/11296/7q77y6, 2015.
[22] J. J. Wu, “Application of Machine Learning to Predicting the Returns of Carry Trade ”, Master Thesis, MIS, National Chengchi University, Taipei, Taiwan, Retrieved from https://hdl.handle.net/11296/8m5pu2, 2017.
[23] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy and A. Bouchachia, “A survey on concept drift adaptation”, ACM Computing Surveys, vol. 46, no. 4, pp. 1-37, 2014.
[24] T. S. Chande and S. Kroll, The new technical trader: boost your profit by plugging into the latest indicators. New York: John Wiley & Sons Inc, 1994.
[25] J. Bollinger, Bollinger on Bollinger bands. New York: McGraw-Hill, 2002.
[26] J. C. Chen, Y. Zhou and X. Wang, “Profitability of simple stationary technical trading rules with high-frequency data of Chinese Index Futures ”, Physica A: Statistical Mechanics and its Applications, vol. 492, pp.1664-1678, 2018.
[27] T. Lubnau and N. Todorova, “Trading on mean-reversion in energy futures markets ”, Energy Economics, vol. 51, pp. 312-319, 2015.
[28] A. C. Atkinson and T. C. Cheng, “Computing least trimmed squares regression with the forward search ”, Statistics and Computing, vol. 9, no. 4, pp. 251-263, 1999.
[29] S. V. Stehman, “Selecting and interpreting measures of thematic classification accuracy ”, Remote sensing of Environment, vol. 62, no. 1, pp. 77-89, 1997.
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU201900839en_US