Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 線上論壇提問推薦機制:以醫療照護問答網站為例
A posting recommendation system for question formulation: A healthcare Q&A forum study
作者 陳怡儒
Chen, Yi-Ju
貢獻者 林怡伶
Lin, Yi-Ling
陳怡儒
Chen, Yi-Ju
關鍵詞 問答論壇
醫療資訊學
推薦系統
主題式推薦系統
詞向量
語意關聯
Word2Vec
WordNet
使用者生成內容
設計科學
使用者研究
廣義估計式
Question-answering forum
Healthcare informatics
Recommendation system
Topic-based recommendation
Word embedding
Semantic relatedness
Word2Vec
WordNet
User-generated content
Design science
User study
Generalized estimating equations
日期 2019
上傳時間 5-Sep-2019 15:45:08 (UTC+8)
摘要 搜尋引擎是現代人慣用搜尋解答的工具,但不是所有人皆可以在搜索引擎上透過精準的查詢句或關鍵字快速找到所需的資訊。有別於搜尋引擎,線上問答論壇並未限制使用者如何提出問題才能找到答案,自由式的書寫環境逐漸吸引許多用戶到平台上尋找有用的資訊,並解決他們在特定領域遇到的困難。然而使用者生成內容不可避免會有表達不清的問題,尤其是特定領域的提問。因為提問者通常不具備專業背景,進而讓論壇分類系統無法成功匹配或是提問目的模糊而得不到專業人士的解答。所以我們設計出一個貼文撰寫推薦系統希望能提高線上論壇的可用性。常見的推薦機制傾向於匹配合適的回覆者或向用戶提出已存在的相似問題,但沒有人去研究如何在詢問過程中撰寫優良的貼文。本文將著重於醫療保健案例中,使用新式推薦系統是否能優化提問者的貼文。我們採用設計科學的方法來完成貼文撰寫主題式推薦系統的研究。目標是協助用戶更了解自己的疑問以組織想法來寫出不錯的貼文,最終獲得有效的答案。我們的推薦系統會透過使用者研究的方式,聘請27名參與者,在兩種保健情境下使用三種模型進行廣義估計式分析,了解使用者是否會因為推薦系統而去優化撰寫的貼文。此外,我們招募兩名從事醫療職業相關的專家,請他們對推薦系統修改後的貼文作評分,驗證是否能讓專家迅速解決問題。我們的結果說明,即使主題式推薦系統的可用性仍需要更多證據來證明,貼文撰寫推薦系統的表現確實與不具備推薦系統的貼文撰寫情況不同。其次,兩位專家評分的結果顯示,添加更多病況資訊並使用貼文撰寫主題式推薦系統,的確增加了獲得更高分評價的可能性。雖然此篇論文遇到了一些問題無法直接證實我們目前主題式的設計可行,不過我們確定了協助寫作貼文的推薦機制是值得探討的。對於常需要協助提問者的服務提供方,優化貼文的機制將能協助服務方製作常見問題與解答,並在撰寫過程中引導提問者至解答頁面,儘速解決問題。
People are getting used to google when they confuse about something, but the truth is not everyone can formulate clear queries on a search engine. Different from the search engine, online Q&A forums allow people to write anything and any styles they want. This free-writing environment gradually attracts more users to search for useful information and deal with their difficulties of specific domains on this platform. However, we cannot control the quality of user-generated content. Few askers have professional backgrounds, so unclear posts may be categorized wrong by supportive systems or difficult to be understood by experts. So, we design a posting recommender and expect it can improve the usability of online forums. In the past, recommendation mechanisms matched suitable repliers or suggested similar questions to users, but no one investigated how to write better posts. This thesis focuses on a new recommendation system to support askers optimizing posts under a healthcare study. We apply the design science methodology to develop a topic-based posting recommender. Its goal is to support users in understanding more about self-issues, organizing thoughts to write reasonable posts and then receiving effective answers. Our posting recommender is evaluated by generalized estimating equations with a user study containing 27 participants, three models, and two healthcare conditions to see if users become more engaged in the question generation. In addition, we recruited two medical-related experts to verify whether modified posts attract them to answer quickly by rating posts from participants. Though the usefulness of our posting recommender still needs more evidence to prove, the result indicates that the performance of a posting recommender acts differently from not having the recommendation system. Another result of analysing experts shows adding more information and using a posting recommender enhance the possibility to get higher rating points. The thesis does encounter some problems to confirm the design effectiveness at this stage, but the posting recommender is proved to be worth investigating. Those who need more efforts to deal with askers may think the posting recommender mechanism useful. The mechanism of optimized posts can help service provider arrange frequently asked questions and guide askers to find the correct answer before posting.
參考文獻 Agichtein, E., Castillo, C., Donato, D., Gionis, A., & Mishne, G. (2008). Finding high-quality content in social media. Proceedings of the International Conference on Web Search and Web Data Mining - WSDM ’08, 183.
Aigner, M., & Ziegler, G. M. (2018). Completing Latin squares. Proofs from THE BOOK, 1–326.
Arora, S., Li, Y., Liang, Y., Ma, T., & Risteski, A. (2016). A latent variable model approach to PMI-based word embeddings. Transactions of the Association for Computational Linguistics, 4, 385–399.
Baltadzhieva, A. (2015). Question quality in community question answering forums : a survey. Sigkdd, 17(1), 8–13.
Beel, J., Langer, S., Genzmehr, M., Gipp, B., Breitinger, C., & Nurnberger, A. (2013). Research paper recommender system evaluation : A quantitative literature survey. Proceedings of the Workshop on Reproducibility and Replication in Recommender Systems Evaluation (RepSys) at the ACM Recommender System Conference, 20(April 2013), 15–22.
Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems survey. Knowledge-Based Systems, 46, 109–132.
Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, 12. https://doi.org/10.1023/A:1021240730564
Denecke, K., & Nejdl, W. (2009). How valuable is medical social media data? Content analysis of the medical web. Information Sciences, 179(12), 1870–1880.
Dror, G., Koren, Y., Maarek, Y., & Szpektor, I. (2010). I want to answer, who has a question? Yahoo! Answers recommender system. Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
Feng, M., Xiang, B., Glass, M. R., Wang, L., & Zhou, B. (2016). Applying deep learning to answer selection: A study and an open task. In 2015 IEEE Workshop on Automatic Speech Recognition and Understanding, ASRU 2015 - Proceedings.
Fox, S. (2013). Health Online 2013: 35% of U.S. adults have gone online to figure out a medical condition; of these, half followed up with a visit to a medical professional. PEW INTERNET & AMERICAN LIFE PROJECT, (January).
Fox, S., & Fallows, D. (2003). Internet health resources: Health searches and email have become more commonplace , but there is room for improvement in searches and overall Internet access Findings. PEW INTERNET & AMERICAN LIFE PROJECT, (July).
Gittens, A., Achlioptas, D., & Mahoney, M. W. (2017). Skip-Gram - Zipf + Uniform = Vector Additivity. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 69–76.
Höchstötter, N., & Lewandowski, D. (2006). What users see structures in search engine results pages.
Isern, D., & Moreno, A. (2016). A systematic literature review of agents applied in healthcare. J Med Syst., 40(2).
Jeon, J., Croft, W. B., & Lee, J. H. (2005). Finding similar questions in large question and answer archives. Proceedings of the 14th ACM International Conference on Information and Knowledge Management - CIKM ’05, 84.
John, M. (1996). A new statistical parser based on bigram lexical dependencies. Science, 184–191.
Kim, J.-H., Lee, J.-H., Park, J.-S., Lee, Y., & Rim, K. (2009). Design of diet recommendation system for healthcare service based on user information. Convergence Information Technology, International Conference on (Vol. 0).
Lai, S., Liu, K., He, S., & Zhao, J. (2016). How to generate a good word embedding. IEEE Intelligent Systems, 31(6), 5–14.
Li, B., Jin, T., Lyu, M. R., King, I., & Mak, B. (2012). Analyzing and predicting question quality in community question answering services. Proceedings of the 21st International Conference Companion on World Wide Web - WWW ’12 Companion, 775.
Li, B., & King, I. (2010). Routing questions to appropriate answerers in community question answering services. In Proceedings of the 19th ACM international conference on Information and knowledge management - CIKM ’10.
Liang, K.-Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73(1), 13–22.
Lopez-Nores, M., Blanco-Fern´ndez, Y., Pazos-Arias, J. J., Garcia-Duque, J., & Martin-Vicente, M. I. (2011). Enhancing recommender systems with access to electronic health records and groups of interest in social networks. In 2011 Seventh International Conference on Signal Image Technology & Internet-Based Systems (pp. 105–110).
Mccray, A. T., Loane, R. F., Browne, A. C., & Bangalore, A. K. (1999). Terminology issues in user access to web-based medical information. Proceedings of AMIA Symposium 1999, (October), 107–111.
McHugh, M. L. (2012). Interrater reliability: The kappa statistic. Biochemia Medica, 22(3), 276–282.
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Proceedings of the 26th International Conference on Neural Information Processing Systems, 2, 3111–3119.
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review. US: American Psychological Association.
Mimno, D., & Thompson, L. (2017). The strange geometry of skip-gram with negative sampling. Emnlp 2017, 2863–2868.
Morrell, T. G., & Kerschberg, L. (2012). Personal health explorer: a semantic health recommendation system. In 2012 IEEE 28th International Conference on Data Engineering Workshops (pp. 55–59).
Park, D. H., Kim, H. K., Choi, I. Y., & Kim, J. K. (2012). A literature review and classification of recommender systems research. Expert Systems with Applications, 39(11), 10059–10072.
Pattaraintakorn, P., Zaverucha, G. M., & Cercone, N. (2007). Web based health recommender system using rough sets, survival analysis and rule-based expert systems. In A. An, J. Stefanowski, S. Ramanna, C. J. Butz, W. Pedrycz, & G. Wang (Eds.) (pp. 491–499). Berlin, Heidelberg: Springer Berlin Heidelberg.
Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2008). A design science research methodology for information systems research. Journal of Management Information Systems, 24(3), 45–77.
Pu, P., Chen, L., & Hu, R. (2011). A user-centric evaluation framework for recommender systems. In Proceedings of the Fifth ACM Conference on Recommender Systems (pp. 157–164). New York, NY, USA: ACM.
Riahi, F., Zolaktaf, Z., Shafiei, M., & Milios, E. (2012). Finding expert users in community question answering. Proceedings of the 21st International Conference Companion on World Wide Web - WWW ’12 Companion, (i), 791.
Rose, D. E., & Levinson, D. (2004). Understanding user goals in web search. Proceedings of WWW 2004, 13–19.
Sami, A., Nagatomi, R., Terabe, M., & Hashimoto, K. (2008). Design of physical activity recommendation system.
Sapatinas, T. (2004). The elements of statistical learning. Journal of the Royal Statistical Society: Series A (Statistics in Society), 167(1), 192–192.
Sezgin, E., & Özkan, S. (2013). A systematic literature review on health recommender systems. In The 4th IEEE International Conference on E-Health and Bioengineering.
Shen, Y., Rong, W., Sun, Z., Ouyang, Y., & Xiong, Z. (2015). Question/answer matching for cqa system via combining lexical and sequential information. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 275–281.
Viera, A. J., & Garrett, J. M. (2005). Understanding interobserver agreement: The kappa statistic. Family Medicine, 37(5), 360–363.
Wiesner, M., & Pfeifer, D. (2010). Adapting recommender systems to the requirements of personal health record systems. IHI’10 - Proceedings of the 1st ACM International Health Informatics Symposium.
Wildemuth, B. B. M., Ph, D., Friedman, C. P., Ph, D., Hill, C., & Carolina, N. (1994). lnformation seeking behaviors of medical students : A classification of questions asked of librarians and physicians. Bulletin of Medical Library Association, 82(July), 295–304.
Williams, R. L., & Cothrel, J. (2000). Four smart ways to run online communities.
Zeng-treitler, Q., Kogan, S., Ash, N., & Greenes, R. A. (2002). Characteristics of consumer terminology for health information retrieval. Methods of Information in Medicine, 41(February), 289–298.
Zhang, Y. (2010). Contextualizing consumer health information searching : An analysis of questions in a social q & a community. Proceedings of the 1st ACM International Health Informatics Symposium, 210–219.
Zhao, J., Collins, C., Chevalier, F., & Balakrishnan, R. (2013). Interactive exploration of implicit and explicit relations in faceted datasets. IEEE Transactions on Visualization and Computer Graphics, 19(12), 2080–2089.
Zhou, G., He, T., Zhao, J., & Hu, P. (2015). Learning continuous word embedding with metadata for question retrieval in community question answering. Acl, 250–259.
描述 碩士
國立政治大學
資訊管理學系
106356025
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0106356025
資料類型 thesis
dc.contributor.advisor 林怡伶zh_TW
dc.contributor.advisor Lin, Yi-Lingen_US
dc.contributor.author (Authors) 陳怡儒zh_TW
dc.contributor.author (Authors) Chen, Yi-Juen_US
dc.creator (作者) 陳怡儒zh_TW
dc.creator (作者) Chen, Yi-Juen_US
dc.date (日期) 2019en_US
dc.date.accessioned 5-Sep-2019 15:45:08 (UTC+8)-
dc.date.available 5-Sep-2019 15:45:08 (UTC+8)-
dc.date.issued (上傳時間) 5-Sep-2019 15:45:08 (UTC+8)-
dc.identifier (Other Identifiers) G0106356025en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/125531-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊管理學系zh_TW
dc.description (描述) 106356025zh_TW
dc.description.abstract (摘要) 搜尋引擎是現代人慣用搜尋解答的工具,但不是所有人皆可以在搜索引擎上透過精準的查詢句或關鍵字快速找到所需的資訊。有別於搜尋引擎,線上問答論壇並未限制使用者如何提出問題才能找到答案,自由式的書寫環境逐漸吸引許多用戶到平台上尋找有用的資訊,並解決他們在特定領域遇到的困難。然而使用者生成內容不可避免會有表達不清的問題,尤其是特定領域的提問。因為提問者通常不具備專業背景,進而讓論壇分類系統無法成功匹配或是提問目的模糊而得不到專業人士的解答。所以我們設計出一個貼文撰寫推薦系統希望能提高線上論壇的可用性。常見的推薦機制傾向於匹配合適的回覆者或向用戶提出已存在的相似問題,但沒有人去研究如何在詢問過程中撰寫優良的貼文。本文將著重於醫療保健案例中,使用新式推薦系統是否能優化提問者的貼文。我們採用設計科學的方法來完成貼文撰寫主題式推薦系統的研究。目標是協助用戶更了解自己的疑問以組織想法來寫出不錯的貼文,最終獲得有效的答案。我們的推薦系統會透過使用者研究的方式,聘請27名參與者,在兩種保健情境下使用三種模型進行廣義估計式分析,了解使用者是否會因為推薦系統而去優化撰寫的貼文。此外,我們招募兩名從事醫療職業相關的專家,請他們對推薦系統修改後的貼文作評分,驗證是否能讓專家迅速解決問題。我們的結果說明,即使主題式推薦系統的可用性仍需要更多證據來證明,貼文撰寫推薦系統的表現確實與不具備推薦系統的貼文撰寫情況不同。其次,兩位專家評分的結果顯示,添加更多病況資訊並使用貼文撰寫主題式推薦系統,的確增加了獲得更高分評價的可能性。雖然此篇論文遇到了一些問題無法直接證實我們目前主題式的設計可行,不過我們確定了協助寫作貼文的推薦機制是值得探討的。對於常需要協助提問者的服務提供方,優化貼文的機制將能協助服務方製作常見問題與解答,並在撰寫過程中引導提問者至解答頁面,儘速解決問題。zh_TW
dc.description.abstract (摘要) People are getting used to google when they confuse about something, but the truth is not everyone can formulate clear queries on a search engine. Different from the search engine, online Q&A forums allow people to write anything and any styles they want. This free-writing environment gradually attracts more users to search for useful information and deal with their difficulties of specific domains on this platform. However, we cannot control the quality of user-generated content. Few askers have professional backgrounds, so unclear posts may be categorized wrong by supportive systems or difficult to be understood by experts. So, we design a posting recommender and expect it can improve the usability of online forums. In the past, recommendation mechanisms matched suitable repliers or suggested similar questions to users, but no one investigated how to write better posts. This thesis focuses on a new recommendation system to support askers optimizing posts under a healthcare study. We apply the design science methodology to develop a topic-based posting recommender. Its goal is to support users in understanding more about self-issues, organizing thoughts to write reasonable posts and then receiving effective answers. Our posting recommender is evaluated by generalized estimating equations with a user study containing 27 participants, three models, and two healthcare conditions to see if users become more engaged in the question generation. In addition, we recruited two medical-related experts to verify whether modified posts attract them to answer quickly by rating posts from participants. Though the usefulness of our posting recommender still needs more evidence to prove, the result indicates that the performance of a posting recommender acts differently from not having the recommendation system. Another result of analysing experts shows adding more information and using a posting recommender enhance the possibility to get higher rating points. The thesis does encounter some problems to confirm the design effectiveness at this stage, but the posting recommender is proved to be worth investigating. Those who need more efforts to deal with askers may think the posting recommender mechanism useful. The mechanism of optimized posts can help service provider arrange frequently asked questions and guide askers to find the correct answer before posting.en_US
dc.description.tableofcontents CHAPTER 1 INTRODUCTION 6
1.1 Background and Motivation 6
1.2 Research Purpose and Questions 8
1.3 Contribution 10
1.4 Content organization 11
CHAPTER 2 LITERATURE REVIEW 12
2.1 Recommendation mechanisms in healthcare domain 12
2.2 Recommendation in the asking process 13
CHAPTER 3 RESEARCH METHODOLOGY 15
3.1 Identify problem & motivation 15
3.2 Define objectives of a solution 16
3.3 Design and development 19
3.3.1 System layout 20
3.3.2 Data preparation of the RS 22
3.3.3 Features extraction 23
3.3.4 Recommender systems’ implementation 24
3.4 User study 26
3.4.1 Dataset 26
3.4.2 Models 26
3.4.3 Tasks and experimental materials 26
3.4.4 Participants and procedure 29
3.5 Evaluation 30
3.5.1 User study evaluation 30
3.5.2 Judgements 31
3.6 Communication 32
CHAPTER 4 ANALYSIS AND RESULTS 33
4.1 Demographic information 33
4.2 Analysis of results 36
4.2.1 Effectiveness 36
4.2.2 Efficiency 40
4.2.3 Circumstance 42
4.3 Experts rate posts 44
4.3.1 Pharmacy expert 44
4.3.2 Medical expert 45
4.3.3 Interaction analysis between model and description 46
4.4 Satisfaction questionnaire 48
CHAPTER 5 DISCUSSION 50
5.1 Effectiveness perspective 50
5.2 Efficiency perspective 51
5.3 Circumstance perspective 52
5.4 Subjective adjudgment 53
5.5 Discussion of questionnaire 54
CHAPTER 6 CONCLUSION 55
APPENDIX 1 – Supportive paragraphs for participants 58
REFERENCE 64
zh_TW
dc.format.extent 2092444 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0106356025en_US
dc.subject (關鍵詞) 問答論壇zh_TW
dc.subject (關鍵詞) 醫療資訊學zh_TW
dc.subject (關鍵詞) 推薦系統zh_TW
dc.subject (關鍵詞) 主題式推薦系統zh_TW
dc.subject (關鍵詞) 詞向量zh_TW
dc.subject (關鍵詞) 語意關聯zh_TW
dc.subject (關鍵詞) Word2Veczh_TW
dc.subject (關鍵詞) WordNetzh_TW
dc.subject (關鍵詞) 使用者生成內容zh_TW
dc.subject (關鍵詞) 設計科學zh_TW
dc.subject (關鍵詞) 使用者研究zh_TW
dc.subject (關鍵詞) 廣義估計式zh_TW
dc.subject (關鍵詞) Question-answering forumen_US
dc.subject (關鍵詞) Healthcare informaticsen_US
dc.subject (關鍵詞) Recommendation systemen_US
dc.subject (關鍵詞) Topic-based recommendationen_US
dc.subject (關鍵詞) Word embeddingen_US
dc.subject (關鍵詞) Semantic relatednessen_US
dc.subject (關鍵詞) Word2Vecen_US
dc.subject (關鍵詞) WordNeten_US
dc.subject (關鍵詞) User-generated contenten_US
dc.subject (關鍵詞) Design scienceen_US
dc.subject (關鍵詞) User studyen_US
dc.subject (關鍵詞) Generalized estimating equationsen_US
dc.title (題名) 線上論壇提問推薦機制:以醫療照護問答網站為例zh_TW
dc.title (題名) A posting recommendation system for question formulation: A healthcare Q&A forum studyen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) Agichtein, E., Castillo, C., Donato, D., Gionis, A., & Mishne, G. (2008). Finding high-quality content in social media. Proceedings of the International Conference on Web Search and Web Data Mining - WSDM ’08, 183.
Aigner, M., & Ziegler, G. M. (2018). Completing Latin squares. Proofs from THE BOOK, 1–326.
Arora, S., Li, Y., Liang, Y., Ma, T., & Risteski, A. (2016). A latent variable model approach to PMI-based word embeddings. Transactions of the Association for Computational Linguistics, 4, 385–399.
Baltadzhieva, A. (2015). Question quality in community question answering forums : a survey. Sigkdd, 17(1), 8–13.
Beel, J., Langer, S., Genzmehr, M., Gipp, B., Breitinger, C., & Nurnberger, A. (2013). Research paper recommender system evaluation : A quantitative literature survey. Proceedings of the Workshop on Reproducibility and Replication in Recommender Systems Evaluation (RepSys) at the ACM Recommender System Conference, 20(April 2013), 15–22.
Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems survey. Knowledge-Based Systems, 46, 109–132.
Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, 12. https://doi.org/10.1023/A:1021240730564
Denecke, K., & Nejdl, W. (2009). How valuable is medical social media data? Content analysis of the medical web. Information Sciences, 179(12), 1870–1880.
Dror, G., Koren, Y., Maarek, Y., & Szpektor, I. (2010). I want to answer, who has a question? Yahoo! Answers recommender system. Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
Feng, M., Xiang, B., Glass, M. R., Wang, L., & Zhou, B. (2016). Applying deep learning to answer selection: A study and an open task. In 2015 IEEE Workshop on Automatic Speech Recognition and Understanding, ASRU 2015 - Proceedings.
Fox, S. (2013). Health Online 2013: 35% of U.S. adults have gone online to figure out a medical condition; of these, half followed up with a visit to a medical professional. PEW INTERNET & AMERICAN LIFE PROJECT, (January).
Fox, S., & Fallows, D. (2003). Internet health resources: Health searches and email have become more commonplace , but there is room for improvement in searches and overall Internet access Findings. PEW INTERNET & AMERICAN LIFE PROJECT, (July).
Gittens, A., Achlioptas, D., & Mahoney, M. W. (2017). Skip-Gram - Zipf + Uniform = Vector Additivity. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 69–76.
Höchstötter, N., & Lewandowski, D. (2006). What users see structures in search engine results pages.
Isern, D., & Moreno, A. (2016). A systematic literature review of agents applied in healthcare. J Med Syst., 40(2).
Jeon, J., Croft, W. B., & Lee, J. H. (2005). Finding similar questions in large question and answer archives. Proceedings of the 14th ACM International Conference on Information and Knowledge Management - CIKM ’05, 84.
John, M. (1996). A new statistical parser based on bigram lexical dependencies. Science, 184–191.
Kim, J.-H., Lee, J.-H., Park, J.-S., Lee, Y., & Rim, K. (2009). Design of diet recommendation system for healthcare service based on user information. Convergence Information Technology, International Conference on (Vol. 0).
Lai, S., Liu, K., He, S., & Zhao, J. (2016). How to generate a good word embedding. IEEE Intelligent Systems, 31(6), 5–14.
Li, B., Jin, T., Lyu, M. R., King, I., & Mak, B. (2012). Analyzing and predicting question quality in community question answering services. Proceedings of the 21st International Conference Companion on World Wide Web - WWW ’12 Companion, 775.
Li, B., & King, I. (2010). Routing questions to appropriate answerers in community question answering services. In Proceedings of the 19th ACM international conference on Information and knowledge management - CIKM ’10.
Liang, K.-Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73(1), 13–22.
Lopez-Nores, M., Blanco-Fern´ndez, Y., Pazos-Arias, J. J., Garcia-Duque, J., & Martin-Vicente, M. I. (2011). Enhancing recommender systems with access to electronic health records and groups of interest in social networks. In 2011 Seventh International Conference on Signal Image Technology & Internet-Based Systems (pp. 105–110).
Mccray, A. T., Loane, R. F., Browne, A. C., & Bangalore, A. K. (1999). Terminology issues in user access to web-based medical information. Proceedings of AMIA Symposium 1999, (October), 107–111.
McHugh, M. L. (2012). Interrater reliability: The kappa statistic. Biochemia Medica, 22(3), 276–282.
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Proceedings of the 26th International Conference on Neural Information Processing Systems, 2, 3111–3119.
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review. US: American Psychological Association.
Mimno, D., & Thompson, L. (2017). The strange geometry of skip-gram with negative sampling. Emnlp 2017, 2863–2868.
Morrell, T. G., & Kerschberg, L. (2012). Personal health explorer: a semantic health recommendation system. In 2012 IEEE 28th International Conference on Data Engineering Workshops (pp. 55–59).
Park, D. H., Kim, H. K., Choi, I. Y., & Kim, J. K. (2012). A literature review and classification of recommender systems research. Expert Systems with Applications, 39(11), 10059–10072.
Pattaraintakorn, P., Zaverucha, G. M., & Cercone, N. (2007). Web based health recommender system using rough sets, survival analysis and rule-based expert systems. In A. An, J. Stefanowski, S. Ramanna, C. J. Butz, W. Pedrycz, & G. Wang (Eds.) (pp. 491–499). Berlin, Heidelberg: Springer Berlin Heidelberg.
Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2008). A design science research methodology for information systems research. Journal of Management Information Systems, 24(3), 45–77.
Pu, P., Chen, L., & Hu, R. (2011). A user-centric evaluation framework for recommender systems. In Proceedings of the Fifth ACM Conference on Recommender Systems (pp. 157–164). New York, NY, USA: ACM.
Riahi, F., Zolaktaf, Z., Shafiei, M., & Milios, E. (2012). Finding expert users in community question answering. Proceedings of the 21st International Conference Companion on World Wide Web - WWW ’12 Companion, (i), 791.
Rose, D. E., & Levinson, D. (2004). Understanding user goals in web search. Proceedings of WWW 2004, 13–19.
Sami, A., Nagatomi, R., Terabe, M., & Hashimoto, K. (2008). Design of physical activity recommendation system.
Sapatinas, T. (2004). The elements of statistical learning. Journal of the Royal Statistical Society: Series A (Statistics in Society), 167(1), 192–192.
Sezgin, E., & Özkan, S. (2013). A systematic literature review on health recommender systems. In The 4th IEEE International Conference on E-Health and Bioengineering.
Shen, Y., Rong, W., Sun, Z., Ouyang, Y., & Xiong, Z. (2015). Question/answer matching for cqa system via combining lexical and sequential information. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 275–281.
Viera, A. J., & Garrett, J. M. (2005). Understanding interobserver agreement: The kappa statistic. Family Medicine, 37(5), 360–363.
Wiesner, M., & Pfeifer, D. (2010). Adapting recommender systems to the requirements of personal health record systems. IHI’10 - Proceedings of the 1st ACM International Health Informatics Symposium.
Wildemuth, B. B. M., Ph, D., Friedman, C. P., Ph, D., Hill, C., & Carolina, N. (1994). lnformation seeking behaviors of medical students : A classification of questions asked of librarians and physicians. Bulletin of Medical Library Association, 82(July), 295–304.
Williams, R. L., & Cothrel, J. (2000). Four smart ways to run online communities.
Zeng-treitler, Q., Kogan, S., Ash, N., & Greenes, R. A. (2002). Characteristics of consumer terminology for health information retrieval. Methods of Information in Medicine, 41(February), 289–298.
Zhang, Y. (2010). Contextualizing consumer health information searching : An analysis of questions in a social q & a community. Proceedings of the 1st ACM International Health Informatics Symposium, 210–219.
Zhao, J., Collins, C., Chevalier, F., & Balakrishnan, R. (2013). Interactive exploration of implicit and explicit relations in faceted datasets. IEEE Transactions on Visualization and Computer Graphics, 19(12), 2080–2089.
Zhou, G., He, T., Zhao, J., & Hu, P. (2015). Learning continuous word embedding with metadata for question retrieval in community question answering. Acl, 250–259.
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU201900771en_US