學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

題名 營造以設計為導向的數學師資培育環境
Fostering a Design-oriented Learning Environment for Developing Mathematics Teacher-education Students
作者 江釧池
Chiang, Chuan-Chih
貢獻者 洪煌堯
Hong, Huang-Yao
江釧池
Chiang, Chuan-Chih
關鍵詞 活動理論
數學師資培育
數學教學活動
知識創新
知識論壇
activity theory
mathematics teacher-education course
mathematics teaching activity
knowledge building
Knowledge Forum
日期 2020
上傳時間 1-Jul-2020 13:59:50 (UTC+8)
摘要 因應108課綱改革,未來師資將更重視素養導向的課程設計與教學。本研究之目的在探究如何營造一個更符應課程改革所需的數學師資培育之學習環境。研究對象為12名數學師資生;研究場域為台灣某大學之數學教材教法課程;研究方法採二階段的設計式研究法(design-based research);研究工具則是知識論壇(Knowledge Forum)數位學習平台;資料分析則借用活動理論(activity theory)框架。二階段之教學與課程設計皆採用原則取向(principle-based)的設計模式來經營師資培育之學習環境。其中,第一階段主要採用知識創新原則來營造此一學習環境;第二階段則根據第一階段的研究發現,進一步修正並加入108課綱所揭示的自主、互動與共好等原則,預期透過逐步改進的師資培育之學習環境來引導師資生形成學習社群以共構數學教案、實驗微型教學、與進行同儕回饋與教案修正等。首先,第一階段研究結果指出,基於知識創新原則所營造的學習環境可以有效促進師資生以多樣的方法進行教學,尤其試教後的同儕回饋中也可見師資培育生在給予教學建議上能同時兼顧熟練取向以及重視多元想法的設計取向的教學實踐,然結果亦顯示師資生在微型教學的設計上仍未能完全符合新課綱原則的一些要求。為進一步改良第一階段的教學設計以解決上述所發現的問題,第二階段研究除了知識創新原則外也新加入新課綱所揭櫫的自主、互動與共好等原則,以改進前階段設計之不足。而第二階段的研究結果則發現,在修正後的原則引導下所營造的師資培育學習環境可以加深師資生對教材的理解程度,此原則取向的學習環境亦能有效促進師資生反思如何將新課綱的理念落實於實際教學實踐上。此外,比較兩期的研究結果也發現,第二期課程中師資生更能有效給予熟練取向的教學建議,顯示其在教師專業知能亦有所成長。
In response to the newly introduced Curriculum Guidelines of the 12-Year Basic Education, teachers in the future will emphasize competency-driven curriculum design and teaching. The purpose of this study is to explore how to foster a learning environment in a teacher-education course that is helpful for the needs of mathematics teacher-education students. Participants included 12 students who attended a university course titled ‘Teaching Practicum of Mathematics’. The study conducted two-stage design-based research. We utilized a digital learning platform called, Knowledge Forum, to collect data and employed an activity theory framework to analyze the learning process. The two-stage teaching and curriculum design both adopted a principle-based design model to manage the learning environment for teacher training. The first stage mainly adopted the principles of knowledge building to create this learning environment; the second stage was based on the research findings of the first stage, which was further revised and included the principles of 12-Year Basic Education Curricula, including taking the initiative, and engaging the public, and seeking the common good. We expected to improve the learning environment to guide teacher-education students to form a learning community for co-developing math lesson plans, performing micro-teaching, and giving peer feedback to one another. The results of the first stage indicated that the learning environment based on the principles of knowledge building could effectively promote the diversity of teaching methods of teacher-education students. The peer feedback showed that the teacher-education students could consider both proficiency-orientated and innovation-oriented teaching practices when giving suggestions. On the other hand, it also showed that the teacher-education students still had room for improvement to better apply the new curriculum-related principles in their micro-teaching. In order to further improve the initial design of the first stage to solve these problems, the second stage of the research, in addition to the principles of knowledge building, also added the principles introduced from the new curriculum. The results of the second stage of the study found that the learning environment created under the guidance of the revised principles could deepen the understanding of the teaching materials in the new curriculum. In addition, comparing the results of the two stages, we found that the teacher-education students in the second stage of the study became more capable of giving proficiency-oriented suggestions, showing that they have also improved their teachers` professional knowledge.
參考文獻 余民寧(2002)。有意義的學習-概念構圖之研究。台北市:商鼎。
左台益、李健恆(2018)。素養導向之數學教材設計與發展。教育科學研究期刊,63(4),29-58。
吳正新(2019)。數學素養導向評量試題研發策略。中等教育,70(3),11-35。
吳如皓、董增萊(2013)。從教學面看數學素養。臺灣數學教師電子期刊,34,13-21。
林永豐(2015)。十二年國教中的核心素養概念。教育的想像—演化與創新,123-142。臺北市:學富。
林素微(2019)。中學生閱讀策略使用與數學素養的關聯及其意涵。測驗學刊,66(3),213-248。
林碧珍、鄭章華、陳姿靜(2016)。數學素養導向的任務設計與教學實踐──以發展學童的數學論證為例。教科書研究,9(1),109-134。
國家教育研究院(2015)。十二年國民基本教育課程綱要—核心素養發展手冊。台北市:作者。
教育部(2014)。十二年國民基本教育課程綱要—總綱。臺北市:作者。
教育部(2008)。國民中小學九年一貫課程綱要總綱。臺北市:作者。
教育部(2016)。資訊教育總藍圖。臺北市:作者。
教育部(2017)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校-數學領域。臺北市:作者。
教育部(2019)。央團數學月刊(二、三月)。臺北市:作者。
曹博盛(2012)。Bloom認知領域教育目標分類的修訂版應用於數學領域之命題實例。中等教育,4(63),38-65。
黃郁倫、鐘啟泉(譯)(2014)。學習的革命:從教室出發的改革(原作者:佐藤學)。臺北市:天下。
蔡育知(2018)。數學素養導向教學:七年級以密碼為主題之代數課程與教學設計。臺灣數學教師,39(2),50-65。
鄭立民(2017)。知識翻新型師資培訓之實踐報告-以菲律賓靈惠學院華語教師為對象。華語學刊,22,62-72。
蕭英勵、蔡清田(2017)。行動科技融入教學。師友月刊,605,42-47。
蕭嘉偉、洪碧霞(2013)。試算表融入數學素養動態評量的發展與應用。國立臺灣科技大學人文社會學報,9(2),157-171。
謝豐瑞(2002)。中學生學習歷程中數學思維轉化機制。行政院國家科學委員會專題研究計畫成果報告(NSC90-2521-S-003-003)。臺北市:國立臺灣師範大學。
Anderson, L. W., Krathwohl, D. R., Airasin, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Raths, J., & Wittrock, M. (Eds.) (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom`s taxonomy of educational objectives. New York: Addison Wesley Longman.
Asia Society. (2016) Mathematics Are Global Competency. Retrieved from https://asiasociety.org/education/mathematics-are-globalcompetencies?fbclid=IwAR1c7JMiIQVUpMDKbe9jHbU6AMFoMEFbXWDjiw7Q6ipXOBkKFJVIX30AomU
Bloom, B. S. (Ed.), Engelhart, M. D., Furst, E. J., Hill, Walker H., & Krathwohl, D.R. (1956). Taxonomy of educational objectives (The classification of educational goals):Handbook 1: Cognitive domain. London: Longman.
Collins, A. (1990). Toward a design science of education. Technical report no. 1. In Office of Educational Research and Improvement (Ed.), Center for technology in education. NY: Washington DC.
Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: Theoretical and methodological issues. Journal of the Learning Sciences, 13(1), 15-42.
Cress, Ulrike & Kimmerle, Joachim. (2008). A Systemic and Cognitive view on Collaborative Knowledge Building with Wikis.. International Journal of Computer-Supported Collaborative Learning. 3(2). 105-122.
Dienes, Z. P. (2000). The theory of the six stages of learning with integers. Mathematics in Schools,29(2), 1-25.
Dudley, P. (2013). Teacher Learning in Lesson Study: What Interaction-Level Discourse Analysis Revealed about How Teachers Utilised Imagination, Tacit Knowledge of Teaching and Fresh Evidence of Pupils Learning, to Develop Practice Knowledge and So Enhance Their Pupils’ Lea. Teaching and Teacher Education, 34, 107-121.
Dubinsky, E., & McDonald, M. A. (2001). APOS: A constructivist theory of learning in undergraduate mathematics education research. In D. Holton, M. Artigue, U. Kirchgräber, J. Hillel, M. Niss, & A. Schoenfeld (Eds.), The teaching and learning of mathematics at university level: An ICMI study (Vol. 7, pp. 275-282). Dordrecht, the Netherlands: Kluwer Academic.
Engeström, Y. (1987). Learning by expanding: An activity-theoretical approach to developmental research. Helsinki, Finland: OrientaKonsultit Oy.
Fisher, R. A. (1973). Statistical methods for research workers. New York: Hafner.
Hong, H. –Y. & Lin, S. P. (2010). Teacher-education management, sustainable innovation, and pre-service teacjer education in Singapore. Teacher and Teaching: Theory and practice, 14(4), 369-384.
Hong, H. –Y. & Sullivan, F. R., (2009) Toward an idea-centered, princeple-based design approach to support learning as knowledge creation. Educational Technology Research and Development, 57(5), 613-627.
Hong, H.-Y.; Chen, F. C.;Chai, C. S.;Chan, W. C., (2011). Teacher-education students views about knowledge building theory and practice. Instructional Science, 39(4), 467-482.
Judy Nagy & Tony Burch (2009) Communities of Practice in Academe (CoP‐iA): understanding academic work practices to enable knowledge building capacities in corporate universities. Oxford Review of Education, 35(2), 227-247.
Kainz, H. P., Hegel, G. W. F., & Marx, K. (1974). Hegel`s Philosophy of right, with Marx`s commentary: A handbook for students. The Hague: Martinus Nijhoff.
Leontiev, A. N. (1978). Activity, consciousness, and personality. Englewood Cliff, NJ: Prentice-Hall.
Mylläri, J., Åhlberg, M. and Dillon, P. (2010), The dynamics of an online knowledge building community: A 5‐year longitudinal study. British Journal of Educational Technology, 41, 365-387.
National Council of Teachers of Mathematics (1989). Curriculum and Evaluation Standards for School Mathematics. U. S.: National Academy Press.
National Research Council (1989). Everybody Counts. U. S.: National Academy Press.
Novak, J. D., & Gowin, D. B.(1984). Learning how to learn. Cambridge, London: Cambridge University Press.
OECD(2011).Education. Retrieved from http://www.oecd.org/topic/0,3699,en_2649_ 37455_1_1_1_1_37455,00.html
Pearson, K. (1922). On the χ2 Test of Goodness of Fit. Biometrika, 14(1/2), 186-191.
Sawyer, R. (2004). Creative Teaching: Collaborative Discussion as Disciplined Improvisation. Educational Researcher, 33(2), 12-20.
Scardamalia, M. (2017). Knowledge Forum. In K. Peppler (Ed.), The SAGE Encyclopedia of Out-of. School Learning. Thousand Oaks, CA: SAGE.
Scardamalia, M., & Bereiter, C. (2003) Knowledge building. In Encyclopedia of education. (2ed., 1370-1373). New York: MacMillan Reference, USA.
Strauss, A., & Corbin, J. (1990). Basic of Qualitative research: Grounded theory procedures and techniques. Newbury Park, CA: Sage.
Sun, Yanqing & Zhang, Jianwei & Scardamalia, Marlene. (2010). Knowledge building and vocabulary growth over two years, Grades 3 and 4. Instructional Science, 38.
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.
Western and Northern Canadian Protocol. (2006). The common curriculum framework for K-9 mathematics. Edmonton: Alberta Education.
Yates, Frank. (1934). Contingency Tables Involving Small Numbers and the χ2 Test. Journal of the Royal Statistical Society, 1(2): 217–35.
Yore, L. D., Pimm, D., & Tuan, H. L. (2007). The literacy component of mathematical and scientific literacy. International Journal of Science and Mathematics Education, 5(4), 559–589.
描述 碩士
國立政治大學
教育學系
107152012
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0107152012
資料類型 thesis
dc.contributor.advisor 洪煌堯zh_TW
dc.contributor.advisor Hong, Huang-Yaoen_US
dc.contributor.author (Authors) 江釧池zh_TW
dc.contributor.author (Authors) Chiang, Chuan-Chihen_US
dc.creator (作者) 江釧池zh_TW
dc.creator (作者) Chiang, Chuan-Chihen_US
dc.date (日期) 2020en_US
dc.date.accessioned 1-Jul-2020 13:59:50 (UTC+8)-
dc.date.available 1-Jul-2020 13:59:50 (UTC+8)-
dc.date.issued (上傳時間) 1-Jul-2020 13:59:50 (UTC+8)-
dc.identifier (Other Identifiers) G0107152012en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/130636-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 教育學系zh_TW
dc.description (描述) 107152012zh_TW
dc.description.abstract (摘要) 因應108課綱改革,未來師資將更重視素養導向的課程設計與教學。本研究之目的在探究如何營造一個更符應課程改革所需的數學師資培育之學習環境。研究對象為12名數學師資生;研究場域為台灣某大學之數學教材教法課程;研究方法採二階段的設計式研究法(design-based research);研究工具則是知識論壇(Knowledge Forum)數位學習平台;資料分析則借用活動理論(activity theory)框架。二階段之教學與課程設計皆採用原則取向(principle-based)的設計模式來經營師資培育之學習環境。其中,第一階段主要採用知識創新原則來營造此一學習環境;第二階段則根據第一階段的研究發現,進一步修正並加入108課綱所揭示的自主、互動與共好等原則,預期透過逐步改進的師資培育之學習環境來引導師資生形成學習社群以共構數學教案、實驗微型教學、與進行同儕回饋與教案修正等。首先,第一階段研究結果指出,基於知識創新原則所營造的學習環境可以有效促進師資生以多樣的方法進行教學,尤其試教後的同儕回饋中也可見師資培育生在給予教學建議上能同時兼顧熟練取向以及重視多元想法的設計取向的教學實踐,然結果亦顯示師資生在微型教學的設計上仍未能完全符合新課綱原則的一些要求。為進一步改良第一階段的教學設計以解決上述所發現的問題,第二階段研究除了知識創新原則外也新加入新課綱所揭櫫的自主、互動與共好等原則,以改進前階段設計之不足。而第二階段的研究結果則發現,在修正後的原則引導下所營造的師資培育學習環境可以加深師資生對教材的理解程度,此原則取向的學習環境亦能有效促進師資生反思如何將新課綱的理念落實於實際教學實踐上。此外,比較兩期的研究結果也發現,第二期課程中師資生更能有效給予熟練取向的教學建議,顯示其在教師專業知能亦有所成長。zh_TW
dc.description.abstract (摘要) In response to the newly introduced Curriculum Guidelines of the 12-Year Basic Education, teachers in the future will emphasize competency-driven curriculum design and teaching. The purpose of this study is to explore how to foster a learning environment in a teacher-education course that is helpful for the needs of mathematics teacher-education students. Participants included 12 students who attended a university course titled ‘Teaching Practicum of Mathematics’. The study conducted two-stage design-based research. We utilized a digital learning platform called, Knowledge Forum, to collect data and employed an activity theory framework to analyze the learning process. The two-stage teaching and curriculum design both adopted a principle-based design model to manage the learning environment for teacher training. The first stage mainly adopted the principles of knowledge building to create this learning environment; the second stage was based on the research findings of the first stage, which was further revised and included the principles of 12-Year Basic Education Curricula, including taking the initiative, and engaging the public, and seeking the common good. We expected to improve the learning environment to guide teacher-education students to form a learning community for co-developing math lesson plans, performing micro-teaching, and giving peer feedback to one another. The results of the first stage indicated that the learning environment based on the principles of knowledge building could effectively promote the diversity of teaching methods of teacher-education students. The peer feedback showed that the teacher-education students could consider both proficiency-orientated and innovation-oriented teaching practices when giving suggestions. On the other hand, it also showed that the teacher-education students still had room for improvement to better apply the new curriculum-related principles in their micro-teaching. In order to further improve the initial design of the first stage to solve these problems, the second stage of the research, in addition to the principles of knowledge building, also added the principles introduced from the new curriculum. The results of the second stage of the study found that the learning environment created under the guidance of the revised principles could deepen the understanding of the teaching materials in the new curriculum. In addition, comparing the results of the two stages, we found that the teacher-education students in the second stage of the study became more capable of giving proficiency-oriented suggestions, showing that they have also improved their teachers` professional knowledge.en_US
dc.description.tableofcontents 第一章 緒論 1
第一節 研究動機與目的 1
第二節 研究目的與待答問題 3
第三節 重要名詞釋義 4
第四節 研究範圍與限制 5
第二章 文獻探討 7
第一節 數學素養與活動 7
第二節 知識創新 16
第三節 活動理論 24
第三章 研究方法 31
第一節 流程架構 31
第二節 研究設計 34
第三節 實施流程 37
第四節 資料蒐集與分析 42
第四章 研究結果 59
第一節 第一期研究資料分析 59
第二節 第二期研究資料分析 70
第三節 兩期研究課程比較 93
第五章 結論與建議 101
第一節 結論 101
第二節 建議 105
參考文獻 107
附 錄 111
zh_TW
dc.format.extent 5442266 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0107152012en_US
dc.subject (關鍵詞) 活動理論zh_TW
dc.subject (關鍵詞) 數學師資培育zh_TW
dc.subject (關鍵詞) 數學教學活動zh_TW
dc.subject (關鍵詞) 知識創新zh_TW
dc.subject (關鍵詞) 知識論壇zh_TW
dc.subject (關鍵詞) activity theoryen_US
dc.subject (關鍵詞) mathematics teacher-education courseen_US
dc.subject (關鍵詞) mathematics teaching activityen_US
dc.subject (關鍵詞) knowledge buildingen_US
dc.subject (關鍵詞) Knowledge Forumen_US
dc.title (題名) 營造以設計為導向的數學師資培育環境zh_TW
dc.title (題名) Fostering a Design-oriented Learning Environment for Developing Mathematics Teacher-education Studentsen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 余民寧(2002)。有意義的學習-概念構圖之研究。台北市:商鼎。
左台益、李健恆(2018)。素養導向之數學教材設計與發展。教育科學研究期刊,63(4),29-58。
吳正新(2019)。數學素養導向評量試題研發策略。中等教育,70(3),11-35。
吳如皓、董增萊(2013)。從教學面看數學素養。臺灣數學教師電子期刊,34,13-21。
林永豐(2015)。十二年國教中的核心素養概念。教育的想像—演化與創新,123-142。臺北市:學富。
林素微(2019)。中學生閱讀策略使用與數學素養的關聯及其意涵。測驗學刊,66(3),213-248。
林碧珍、鄭章華、陳姿靜(2016)。數學素養導向的任務設計與教學實踐──以發展學童的數學論證為例。教科書研究,9(1),109-134。
國家教育研究院(2015)。十二年國民基本教育課程綱要—核心素養發展手冊。台北市:作者。
教育部(2014)。十二年國民基本教育課程綱要—總綱。臺北市:作者。
教育部(2008)。國民中小學九年一貫課程綱要總綱。臺北市:作者。
教育部(2016)。資訊教育總藍圖。臺北市:作者。
教育部(2017)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校-數學領域。臺北市:作者。
教育部(2019)。央團數學月刊(二、三月)。臺北市:作者。
曹博盛(2012)。Bloom認知領域教育目標分類的修訂版應用於數學領域之命題實例。中等教育,4(63),38-65。
黃郁倫、鐘啟泉(譯)(2014)。學習的革命:從教室出發的改革(原作者:佐藤學)。臺北市:天下。
蔡育知(2018)。數學素養導向教學:七年級以密碼為主題之代數課程與教學設計。臺灣數學教師,39(2),50-65。
鄭立民(2017)。知識翻新型師資培訓之實踐報告-以菲律賓靈惠學院華語教師為對象。華語學刊,22,62-72。
蕭英勵、蔡清田(2017)。行動科技融入教學。師友月刊,605,42-47。
蕭嘉偉、洪碧霞(2013)。試算表融入數學素養動態評量的發展與應用。國立臺灣科技大學人文社會學報,9(2),157-171。
謝豐瑞(2002)。中學生學習歷程中數學思維轉化機制。行政院國家科學委員會專題研究計畫成果報告(NSC90-2521-S-003-003)。臺北市:國立臺灣師範大學。
Anderson, L. W., Krathwohl, D. R., Airasin, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Raths, J., & Wittrock, M. (Eds.) (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom`s taxonomy of educational objectives. New York: Addison Wesley Longman.
Asia Society. (2016) Mathematics Are Global Competency. Retrieved from https://asiasociety.org/education/mathematics-are-globalcompetencies?fbclid=IwAR1c7JMiIQVUpMDKbe9jHbU6AMFoMEFbXWDjiw7Q6ipXOBkKFJVIX30AomU
Bloom, B. S. (Ed.), Engelhart, M. D., Furst, E. J., Hill, Walker H., & Krathwohl, D.R. (1956). Taxonomy of educational objectives (The classification of educational goals):Handbook 1: Cognitive domain. London: Longman.
Collins, A. (1990). Toward a design science of education. Technical report no. 1. In Office of Educational Research and Improvement (Ed.), Center for technology in education. NY: Washington DC.
Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: Theoretical and methodological issues. Journal of the Learning Sciences, 13(1), 15-42.
Cress, Ulrike & Kimmerle, Joachim. (2008). A Systemic and Cognitive view on Collaborative Knowledge Building with Wikis.. International Journal of Computer-Supported Collaborative Learning. 3(2). 105-122.
Dienes, Z. P. (2000). The theory of the six stages of learning with integers. Mathematics in Schools,29(2), 1-25.
Dudley, P. (2013). Teacher Learning in Lesson Study: What Interaction-Level Discourse Analysis Revealed about How Teachers Utilised Imagination, Tacit Knowledge of Teaching and Fresh Evidence of Pupils Learning, to Develop Practice Knowledge and So Enhance Their Pupils’ Lea. Teaching and Teacher Education, 34, 107-121.
Dubinsky, E., & McDonald, M. A. (2001). APOS: A constructivist theory of learning in undergraduate mathematics education research. In D. Holton, M. Artigue, U. Kirchgräber, J. Hillel, M. Niss, & A. Schoenfeld (Eds.), The teaching and learning of mathematics at university level: An ICMI study (Vol. 7, pp. 275-282). Dordrecht, the Netherlands: Kluwer Academic.
Engeström, Y. (1987). Learning by expanding: An activity-theoretical approach to developmental research. Helsinki, Finland: OrientaKonsultit Oy.
Fisher, R. A. (1973). Statistical methods for research workers. New York: Hafner.
Hong, H. –Y. & Lin, S. P. (2010). Teacher-education management, sustainable innovation, and pre-service teacjer education in Singapore. Teacher and Teaching: Theory and practice, 14(4), 369-384.
Hong, H. –Y. & Sullivan, F. R., (2009) Toward an idea-centered, princeple-based design approach to support learning as knowledge creation. Educational Technology Research and Development, 57(5), 613-627.
Hong, H.-Y.; Chen, F. C.;Chai, C. S.;Chan, W. C., (2011). Teacher-education students views about knowledge building theory and practice. Instructional Science, 39(4), 467-482.
Judy Nagy & Tony Burch (2009) Communities of Practice in Academe (CoP‐iA): understanding academic work practices to enable knowledge building capacities in corporate universities. Oxford Review of Education, 35(2), 227-247.
Kainz, H. P., Hegel, G. W. F., & Marx, K. (1974). Hegel`s Philosophy of right, with Marx`s commentary: A handbook for students. The Hague: Martinus Nijhoff.
Leontiev, A. N. (1978). Activity, consciousness, and personality. Englewood Cliff, NJ: Prentice-Hall.
Mylläri, J., Åhlberg, M. and Dillon, P. (2010), The dynamics of an online knowledge building community: A 5‐year longitudinal study. British Journal of Educational Technology, 41, 365-387.
National Council of Teachers of Mathematics (1989). Curriculum and Evaluation Standards for School Mathematics. U. S.: National Academy Press.
National Research Council (1989). Everybody Counts. U. S.: National Academy Press.
Novak, J. D., & Gowin, D. B.(1984). Learning how to learn. Cambridge, London: Cambridge University Press.
OECD(2011).Education. Retrieved from http://www.oecd.org/topic/0,3699,en_2649_ 37455_1_1_1_1_37455,00.html
Pearson, K. (1922). On the χ2 Test of Goodness of Fit. Biometrika, 14(1/2), 186-191.
Sawyer, R. (2004). Creative Teaching: Collaborative Discussion as Disciplined Improvisation. Educational Researcher, 33(2), 12-20.
Scardamalia, M. (2017). Knowledge Forum. In K. Peppler (Ed.), The SAGE Encyclopedia of Out-of. School Learning. Thousand Oaks, CA: SAGE.
Scardamalia, M., & Bereiter, C. (2003) Knowledge building. In Encyclopedia of education. (2ed., 1370-1373). New York: MacMillan Reference, USA.
Strauss, A., & Corbin, J. (1990). Basic of Qualitative research: Grounded theory procedures and techniques. Newbury Park, CA: Sage.
Sun, Yanqing & Zhang, Jianwei & Scardamalia, Marlene. (2010). Knowledge building and vocabulary growth over two years, Grades 3 and 4. Instructional Science, 38.
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.
Western and Northern Canadian Protocol. (2006). The common curriculum framework for K-9 mathematics. Edmonton: Alberta Education.
Yates, Frank. (1934). Contingency Tables Involving Small Numbers and the χ2 Test. Journal of the Royal Statistical Society, 1(2): 217–35.
Yore, L. D., Pimm, D., & Tuan, H. L. (2007). The literacy component of mathematical and scientific literacy. International Journal of Science and Mathematics Education, 5(4), 559–589.
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU202000576en_US