學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

題名 基於古典與量子卷積神經網絡的時間序列圖像分析
Time Series Image Analysis by Classical and Quantum Convolutional Neural Networks
作者 周琪
Zhou, Qi
貢獻者 廖四郎
Liao, Szu-Lang
周琪
Zhou, Qi
關鍵詞 時間序列圖像化
古典卷積神經網路
量子卷積神經網絡
圖像分類
趨勢預測
Imaging time series
Classical convolutional neural network
Quantum convolutional neural network
Image classification
Trend prediction
日期 2020
上傳時間 3-Aug-2020 17:39:47 (UTC+8)
摘要 時間序列是一維數據,但我們可以將其轉換成二維矩陣,最終圖像化後成三維張量。圖像化時間序列的映射需要能夠保留時間依賴性等時間序列重要特徵。卷積神經網絡是深度學習中一種重要的神經網絡,在計算機視覺領域有著非常多的應用,其對視覺信息的處理能力非常突出。所以我們將時間序列圖像和卷積神經網絡結合,研究從高維數據上提取數據特徵的可行性與能力,並最終用來進行時間序列圖像分類和未來趨勢預測。研究結果顯示,卷積神經網絡在時間序列圖像分類和未來趨勢預測上有良好表現,其策略表現可以超越基準線並獲得正的累積收益。另外,我們也對量子卷積神經網絡做了初步探討,我們闡述了相關理論,同時模擬構建了一個量子卷積神經網絡模型。研究結果顯示,量子卷積神經網絡是可行有效的,且在時間序列圖像分類和未來趨勢預測上能夠達到古典卷積神經網絡的水準。量子卷積神經網絡具有很大潛力且值得被研究。
Time series is a one dimensional data, but we can transform it to be a two dimensional matrix, and finally obtain a time series image, which is a three dimensional tensor. A map of imaging time series should preserve some important properties of the time series such as the temporal dependency. Convolutional neural network is a kind of neural networks in deep learning, it is widely applied in the field of computer vision for its strong visual information processing ability. Therefore, we combine the time series image and the convolutional neural network together to research the feasibility and the ability of extracting features from the high dimensional data, and use the model to do the time series image classification and the future trend prediction. The result shows that the convolutional neural network has a good performance on time series image classification and future trend prediction. It could beat the baseline and has a positive cumulative return. In addition, we do a preliminary research on the quantum convolutional neural network. We describe the relative theory and simulate a quantum convolutional neural network model. The result shows that the quantum convolutional neural network is feasible and could reach the similar level of the classical convolutional neural network on both time series image classification and future trend prediction. Quantum convolutional neural network is potential and deserves to be studied.
參考文獻 [1] Cong, I., Choi, S., & Lukin, M. D. (2019). Quantum Convolutional Neural Networks. Nature Physics, 15, 1273-1278.
[2] Eckman, J. P., Kamphorst, S. O., & Ruelle, D. (1987). Recurrence Plots of Dynamical Systems. Europhysics Letters, 4 (91), 973-977.
[3] Erhan, D., Bengio, Y., Courville, A., Manzagol, P. A., & Vincent, P. (2010). Why Does Unsupervised Pre-training Help Deep Learning? Journal of Machine Learning Research, 11, 625-660.
[4] Heaton, J. B., Polson, N. G., & Witte, J. H. (2016). Deep Learning for Finance: Deep Portfolios. Applied Stochastic Models in Business and Industry, 33, 3-12.
[5] Heaton, J. B., Polson, N. G., & Witte, J. H. (2016). Deep Portfolio Theory. arXiv:1605.07230.
[6] Kavukcuoglu, K., Sermanet, P., Boureau, Y. L., Gregor, K., Mathieu, M., & LeCun, Y. (2010). Learning Convolutional Feature Hierarchies for Visual Recognition. Neural Information Processing Systems, 1, 1090-1098.
[7] Kaye, P., Laflamme, R., & Mosca, M. (2019). An Introduction to Quantum Computing. Oxford University Press.
[8] Kerenidis, I., & Prakash, A. (2016). Quantum Recommendation Systems. Innovations in Theoretical Computer Science Conference, 49, 1-21.
[9] Kerenidis, I., Landman, J., Luongo, A., & Prakash, A. (2018). Q-means: A Quantum Algorithm for Unsupervised Machine Learning. Neural Information Processing Systems.
[10] Kerenidis, I., Landman, J., & Prakash, A. (2020). Quantum Algorithms for Deep Con- volutional Neural Network. International Conference on Learning Representations.
[11] Kitaev, A. Y., Shen, A. H., & Vyalyi, M. N. (1999). Classical and Quantum Computa- tion. American Mathematical Society.
[12] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet Classification with Deep Convolutional Neural Networks. Communications of the Association for Computing Machinery, 60(6), 84-90.
[13] Lai, C. (2018). Analysis of the predictive ability of time series using convolutional neural network. National Cheng-Chi University.
[14] Le, Q. V., Ngiam, J., Chen, Z., Chia, D., Koh, P. W., & Ng, A. Y. (2010). Tiled Convolutional Neural Networks. Neural Information Processing Systems, 1, 1279-1287.
[15] LeCun, Y., & Bengio, Y. (1995). Convolutional Networks for Images, Speech, and Time Series. The Handbook of Brain Theory and Neural Networks, 255-258.
[16] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based Learning Ap- plied to Document Recognition. Proceedings of the Institute of Electrical and Electronics Engineers, 86(11), 2278-2324.
[17] Martin, T., Hagan, M. T., Demuth, H. B., Beale, M. H., & Jesús, O. D. (2014). Neural Network Design. Martin Hagan.
[18] Nakahara, M., & Ohmi, T. (2008). Quantum Ccomputing From Linear Algebra to Physical Realizations. Chemical Rubber Company Press.
[19] Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Infor- mation. University Press of Cambridge.
[20] Sakurai, J. J., & Napolitano, J.J. (2014). Modern Quantum Mechanics. Pearson Edu- cation Limited.
[21] Scherer, W. (2019). Mathematics of Quantum Computing. Springer Nature Switzerland AG.
[22] Shankar, R. (1994). Principles of Quantum Mechanics. Plenum Press.
[23] Susskind, L., & Friedman, A. (2014). Quantum Mechanics, The Theoretical Minimum. Perseus Books Group.
[24] Wang, Z., & Oates, T. (2015). Imaging Time-Series to Improve Classification and Impu- tation. Proceedings of the International Conference on Artificial Intelligence, 3939-3945.
[25] Wu, J. (2017). Introduction to Convolutional Neural Networks. Nanjing University.
[26] Zettili, N. (2009). Quantum Mechanics Concepts and Applications. John Wiley & Sons Limited.
描述 碩士
國立政治大學
金融學系
107352038
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0107352038
資料類型 thesis
dc.contributor.advisor 廖四郎zh_TW
dc.contributor.advisor Liao, Szu-Langen_US
dc.contributor.author (Authors) 周琪zh_TW
dc.contributor.author (Authors) Zhou, Qien_US
dc.creator (作者) 周琪zh_TW
dc.creator (作者) Zhou, Qien_US
dc.date (日期) 2020en_US
dc.date.accessioned 3-Aug-2020 17:39:47 (UTC+8)-
dc.date.available 3-Aug-2020 17:39:47 (UTC+8)-
dc.date.issued (上傳時間) 3-Aug-2020 17:39:47 (UTC+8)-
dc.identifier (Other Identifiers) G0107352038en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/130998-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 金融學系zh_TW
dc.description (描述) 107352038zh_TW
dc.description.abstract (摘要) 時間序列是一維數據,但我們可以將其轉換成二維矩陣,最終圖像化後成三維張量。圖像化時間序列的映射需要能夠保留時間依賴性等時間序列重要特徵。卷積神經網絡是深度學習中一種重要的神經網絡,在計算機視覺領域有著非常多的應用,其對視覺信息的處理能力非常突出。所以我們將時間序列圖像和卷積神經網絡結合,研究從高維數據上提取數據特徵的可行性與能力,並最終用來進行時間序列圖像分類和未來趨勢預測。研究結果顯示,卷積神經網絡在時間序列圖像分類和未來趨勢預測上有良好表現,其策略表現可以超越基準線並獲得正的累積收益。另外,我們也對量子卷積神經網絡做了初步探討,我們闡述了相關理論,同時模擬構建了一個量子卷積神經網絡模型。研究結果顯示,量子卷積神經網絡是可行有效的,且在時間序列圖像分類和未來趨勢預測上能夠達到古典卷積神經網絡的水準。量子卷積神經網絡具有很大潛力且值得被研究。zh_TW
dc.description.abstract (摘要) Time series is a one dimensional data, but we can transform it to be a two dimensional matrix, and finally obtain a time series image, which is a three dimensional tensor. A map of imaging time series should preserve some important properties of the time series such as the temporal dependency. Convolutional neural network is a kind of neural networks in deep learning, it is widely applied in the field of computer vision for its strong visual information processing ability. Therefore, we combine the time series image and the convolutional neural network together to research the feasibility and the ability of extracting features from the high dimensional data, and use the model to do the time series image classification and the future trend prediction. The result shows that the convolutional neural network has a good performance on time series image classification and future trend prediction. It could beat the baseline and has a positive cumulative return. In addition, we do a preliminary research on the quantum convolutional neural network. We describe the relative theory and simulate a quantum convolutional neural network model. The result shows that the quantum convolutional neural network is feasible and could reach the similar level of the classical convolutional neural network on both time series image classification and future trend prediction. Quantum convolutional neural network is potential and deserves to be studied.en_US
dc.description.tableofcontents 1 Introduction 1
1.1 Background and motivation 1
1.2 Purpose 2
1.3 Article structure 2
2 Literature review 3
2.1 Imaging time series 3
2.2 Neural network 4
2.3 Quantum theory 6
3 Imaging time series 9
3.1 Tensor representation 9
3.2 Gramian angular field (GAF) 10
3.3 Markov transition field (MTF) 13
3.4 Recurrence plot (RP) 15
3.5 Merged image 16
4 Data processing 18
4.1 Time series 18
4.2 Time series image 19
4.3 Data set 23
5 Classical convolutional neural network (CCNN) 24
5.1 Forward pass 24
5.1.1 Convolutional layer 24
5.1.2 Activation function 25
5.1.3 Pooling layer 26
5.1.4 Fully connected layer 27
5.2 Backward pass 27
5.2.1 Loss function 27
5.2.2 Optimization 28
6 Quantum convolutional neural network (QCNN) 30
6.1 Quantum information and quantum computing 30
6.2 Forward pass 32
6.2.1 Convolution as matrix multiplication 32
6.2.2 Quantum convolution 35
6.2.3 Activation function 36
6.2.4 Quantum sampling 38
6.2.5 Pooling layer 40
6.2.6 Fully connected layer 40
6.3 Backward pass 40
6.3.1 Loss function 40
6.3.2 Optimization 41
7 Experimental design 42
7.1 Convolutional neural network architecture 42
7.2 Strategy 44
7.3 Evaluation 44
7.3.1 Confusion matrix 44
7.3.2 Annual return rate 45
7.3.3 Max drawdown 45
7.3.4 Calmar ratio 45
7.4 Experimental groups 46
8 Research result 47
8.1 Result of the train and validation sets 47
8.2 Result of the test set 50
8.3 Performance of the strategy 53
9 Conclusion, discussion, and future work 65
9.1 Conclusion 65
9.2 Discussion 66
9.2.1 About the merged data 66
9.2.2 About the label of image 66
9.2.3 About the magnitude of the data set 67
9.2.4 About the normalization and activation function 68
9.2.5 About the predictions of convolutional neural networks 68
9.3 Future work 69
References 70
zh_TW
dc.format.extent 3074316 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0107352038en_US
dc.subject (關鍵詞) 時間序列圖像化zh_TW
dc.subject (關鍵詞) 古典卷積神經網路zh_TW
dc.subject (關鍵詞) 量子卷積神經網絡zh_TW
dc.subject (關鍵詞) 圖像分類zh_TW
dc.subject (關鍵詞) 趨勢預測zh_TW
dc.subject (關鍵詞) Imaging time seriesen_US
dc.subject (關鍵詞) Classical convolutional neural networken_US
dc.subject (關鍵詞) Quantum convolutional neural networken_US
dc.subject (關鍵詞) Image classificationen_US
dc.subject (關鍵詞) Trend predictionen_US
dc.title (題名) 基於古典與量子卷積神經網絡的時間序列圖像分析zh_TW
dc.title (題名) Time Series Image Analysis by Classical and Quantum Convolutional Neural Networksen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] Cong, I., Choi, S., & Lukin, M. D. (2019). Quantum Convolutional Neural Networks. Nature Physics, 15, 1273-1278.
[2] Eckman, J. P., Kamphorst, S. O., & Ruelle, D. (1987). Recurrence Plots of Dynamical Systems. Europhysics Letters, 4 (91), 973-977.
[3] Erhan, D., Bengio, Y., Courville, A., Manzagol, P. A., & Vincent, P. (2010). Why Does Unsupervised Pre-training Help Deep Learning? Journal of Machine Learning Research, 11, 625-660.
[4] Heaton, J. B., Polson, N. G., & Witte, J. H. (2016). Deep Learning for Finance: Deep Portfolios. Applied Stochastic Models in Business and Industry, 33, 3-12.
[5] Heaton, J. B., Polson, N. G., & Witte, J. H. (2016). Deep Portfolio Theory. arXiv:1605.07230.
[6] Kavukcuoglu, K., Sermanet, P., Boureau, Y. L., Gregor, K., Mathieu, M., & LeCun, Y. (2010). Learning Convolutional Feature Hierarchies for Visual Recognition. Neural Information Processing Systems, 1, 1090-1098.
[7] Kaye, P., Laflamme, R., & Mosca, M. (2019). An Introduction to Quantum Computing. Oxford University Press.
[8] Kerenidis, I., & Prakash, A. (2016). Quantum Recommendation Systems. Innovations in Theoretical Computer Science Conference, 49, 1-21.
[9] Kerenidis, I., Landman, J., Luongo, A., & Prakash, A. (2018). Q-means: A Quantum Algorithm for Unsupervised Machine Learning. Neural Information Processing Systems.
[10] Kerenidis, I., Landman, J., & Prakash, A. (2020). Quantum Algorithms for Deep Con- volutional Neural Network. International Conference on Learning Representations.
[11] Kitaev, A. Y., Shen, A. H., & Vyalyi, M. N. (1999). Classical and Quantum Computa- tion. American Mathematical Society.
[12] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet Classification with Deep Convolutional Neural Networks. Communications of the Association for Computing Machinery, 60(6), 84-90.
[13] Lai, C. (2018). Analysis of the predictive ability of time series using convolutional neural network. National Cheng-Chi University.
[14] Le, Q. V., Ngiam, J., Chen, Z., Chia, D., Koh, P. W., & Ng, A. Y. (2010). Tiled Convolutional Neural Networks. Neural Information Processing Systems, 1, 1279-1287.
[15] LeCun, Y., & Bengio, Y. (1995). Convolutional Networks for Images, Speech, and Time Series. The Handbook of Brain Theory and Neural Networks, 255-258.
[16] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based Learning Ap- plied to Document Recognition. Proceedings of the Institute of Electrical and Electronics Engineers, 86(11), 2278-2324.
[17] Martin, T., Hagan, M. T., Demuth, H. B., Beale, M. H., & Jesús, O. D. (2014). Neural Network Design. Martin Hagan.
[18] Nakahara, M., & Ohmi, T. (2008). Quantum Ccomputing From Linear Algebra to Physical Realizations. Chemical Rubber Company Press.
[19] Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Infor- mation. University Press of Cambridge.
[20] Sakurai, J. J., & Napolitano, J.J. (2014). Modern Quantum Mechanics. Pearson Edu- cation Limited.
[21] Scherer, W. (2019). Mathematics of Quantum Computing. Springer Nature Switzerland AG.
[22] Shankar, R. (1994). Principles of Quantum Mechanics. Plenum Press.
[23] Susskind, L., & Friedman, A. (2014). Quantum Mechanics, The Theoretical Minimum. Perseus Books Group.
[24] Wang, Z., & Oates, T. (2015). Imaging Time-Series to Improve Classification and Impu- tation. Proceedings of the International Conference on Artificial Intelligence, 3939-3945.
[25] Wu, J. (2017). Introduction to Convolutional Neural Networks. Nanjing University.
[26] Zettili, N. (2009). Quantum Mechanics Concepts and Applications. John Wiley & Sons Limited.
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU202001059en_US