Publications-Theses
Article View/Open
Publication Export
-
題名 影響純網路銀行採用意願之關鍵因素-以科技、個人、環境觀點
Critical Factors of Consumer`s Adoption Intention on Virtual Banking:A Technological–Personal–Environmental Perspective作者 嚴昱婷
Yen, Yu-Ting貢獻者 洪為璽
Hung, Wei-Hsi
嚴昱婷
Yen, Yu-Ting關鍵詞 純網路銀行
科技接受模型3
認知風險
Virtual banking
TPE
Acceptance model 3
Risk perception日期 2020 上傳時間 3-Aug-2020 18:42:14 (UTC+8) 摘要 網路銀行的發展打破了傳統實體銀行在分行空間及營業時間上的限制,使消費者不須出門且在任何時間點,皆可透過網路來獲取日常所需的金融服務,而台灣也在近年跟進,開始投入純網路銀行的建置及佈局,而純網路銀行與網路銀行最大的差異在於,純網路銀行沒有實體分行的設置,雖然其提供的金融服務與傳統銀行無異,但沒有營業人員的服務協助以及從開戶到交易操作全都必須在線上完成等因素,皆可能是消費者對於是否採用新型態銀行服務的一大考量。對於台灣國內來說,純網路銀行仍是一個新的概念,因此本研究從科技、個人、環境構面,以科技接受模式3及認知風險,來探討影響消費者對純網路銀行採用意願的關鍵因素。透過問卷調查與分析,本研究發現:1)科技構面中,輸出品質、成果展現及客觀使用對採用意願皆具顯著相關,其中輸出品質最具影響力且相關性最大,為採用意願之關鍵因素。2)個人構面中,電腦自我效能、電腦焦慮、財務風險、時間/便利風險及隱私風險對採用意願皆具顯著相關,其中電腦焦慮及隱私風險與採用意願的相關性最大,為影響之關鍵因素。3)環境構面中,主觀規範及知覺外部控制對採用意願皆具顯著相關,其中知覺外部控制最具影響力且相關性最大,為採用意願之關鍵因素。
The development of online banking has extended the boundaries of physical banks. Consumers can get financial service via Internet at anytime and anywhere. Taiwan has also followed up the trend in recent years, and invested in the development of virtual banking initiatives. The biggest difference between virtual banking and online banking is that virtual banking has no any physical branch. In regard to financial services, the virtual banking is with no different from traditional banks; yet, the lack of service assistance from staff could be a major consideration of consumer`s adoption intention on virtual banking. In Taiwan, virtual banking is still a new concept, so this research tends to explore the critical factors of consumer`s adoption intention on virtual banking from technology, personal, and environmental aspects as well as acceptance model 3 and risk perception theory.Based on the survey method, this study found: 1. In the technology aspect, output quality, result demonstrability and objective usability are all significantly related to the adoption intention. And output quality is the most influential and the most relevant to the adoption intention, which is also the critical factor. 2. In the personal aspect, computer self-efficacy, computer anxiety, financial risk, time/convenience risk and privacy risk are all significantly related to the adoption intention. Computer anxiety and privacy risk are the most relevant to the adoption intention. 3. In the environmental aspect, subjective norm and perceptions of external control are significantly related to the adoption intention. Perceptions of external control is the most influential and the most relevant to the adoption intention. Perceptions of external control is also the critical factors of consumer`s adoption intention on virtual banking.參考文獻 一、中文文獻王信淳 (2015)。純網路銀行及其監管問題研究。金融監管,(7),71-75。伍旭川 & 張翔 (2015)。我國純網路銀行的風險特徵與監管建議。TSINGHUA FINANCIAL REVIEW,(August),27–30。李谷震 (2015)。我國網路銀行風險及對監管產生的挑戰分析。產業與科技論壇,14(21),13–15。孟繁穎 (2015)。對純網路銀行風險特徵的認識及監管思考。長春金融高等專科學校學報,(1),23–27。林芬蘭 (2019)。純網路銀行發展暨其對金融體系之影響。財團法人俞國華文教基金會獎助出國專題研究報告書。武寧 (2017)。我國純網路銀行運行特徵及風險防範。合作經濟與科技,(4),74–75。邱峰 (2015)。新興金融業態-純互聯網銀行模式研究。吉林金融研究,(4),34–39。胡宸豪 (2016)。純網路银行風險監管制度硏究。上海社會科學院。財團法人台灣網路資訊中心 (2018)。2018台灣網路報告。國家發展委員會 (2019)。108年個人家戶數位機會調查報告。梁思莉 (2014)。我國網路銀行市場准入制度研究。重慶大學。陳一稀 (2014)。美國純網路銀行的興衰對中國的借鑑。互聯網金融,(299),58–62。黃華兵 & 馬磊 (2006)。為什麼純網路銀行還未成為銀行主導模式-新制度經濟學的視角。商場現代化,(468)。廖清信(譯) (1999)。電子銀行與電子貨幣活動的風險管理。劉書甯 (2018)。「日韓篇 跨界合作打造網銀新未來 傳統銀行大挑戰 網路霸主跨向金融」,台灣銀行家,103 期,7 月。盧志敏 (2001)。網路銀行的發展與影響。中央銀行季刊,23(1),47–62。二、英文文獻Avasthi, G., & Sharma, M. (2001). Information technology in banking: Challenges for regulators. Prajnan, XXIX(4), 343–351.Bahl, S. (2012). E-Banking : Challenges & policy implications. International Journal of Computing & Business Research.Bandura, A. (1986). The explanatory and predictive scope of self-efficacy theory. Journal of Social and Clinical Psychology, 4(3), 359–373.Barquin, Sonia and Vinayak HV (2016), “Building a Digital-Banking Business,” Mckinsey & Company, April.Basel Committee on Banking Supervision. (1998). Risk management for electronic banking and electronic money activities.Bauer, R.A. (1960). Consumer Behavior as Risk Taking. Dynamic Marketing for Changing World: American Marketing Association, 389-393.Bergeron, F., Raymond, L., & Rivard, S. (2001). Fit in strategic information technology management research: An empirical comparison of perspectives.Omega, 29(2), 125-142.Chang, H.-S., & Hsiao, H.-L. (2008). Examining the casual relationship among service recovery, perceived justice, perceived risk, and customer value in the hotel industry. The Service Industries Journal, 28(4), 513-528.Dandapani, K., Lassar, A., &Sharon, S. L. (2005). Virtual banking: Impetus and impediments. The International Journal of Finance, 17(2), 3512–3524.Davis, F.D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results. Massachusetts, United States: Sloan School of Management, Massachusetts Institute of Technology.Featherman, M. S., & Pavlou, P.A. (2003). Predicting e-services adoption : A perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451–474.Felt, A. P., Greenwood, K., & Wagner, D. (2011). The effectiveness of application permissions. Proceedings of the 2nd USENIX conference on Web application development, 7-7.Financial IT (2017), “Top 50 Digital Only Banks Ranking 2017,” Special Sibos & Money 20/20 Issue.Forsythe, S. M., & Shi, B. (2003). Consumer patronage and risk perceptions in Internet shopping. Journal of Business Research, 56(11), 867-875.Hair, J. F., Anderson. R. E., Tatham. R. L., & Black. W. C. (1992). Multivariate Data Analysis with Reading 3rd ed, New York: Macmillan.Power, J. D. (2017), “Mobile Banking Surges in China; Relationship Managers Remain Critical, J.D. Power Finds,” July 27.Jiang, Y., Chen, D., & Lai, F. (2010). Technological-Personal-Environmental (TPE) Framework: A Conceptual Model for Technology Acceptance at the Individual Level. Journal of International Technology & Information Management, 19(3), 89-98.Kansal, P. (2014). Online privacy concerns and consumer reactions: insights for future strategies. Journal of Indian Business Research, 6(3), 190-212.Kansal, P. (2016).Perceived risk and technology acceptance model in self-service banking - a study on the nature of mediation. South Asian Journal of Management, 23(2), 51-71.Kuisma, T., Laukkanen, T., & Hiltunen, M. (2007). Mapping the reasons for resistance to Internet banking: A means-end approach. International Journal of Information Management, 27(2), 75-85.Lee, K. S., & Tan, S. J. (2003). E-retailing versus physical retailing: a theoretical model and empirical test of consumer choice. Journal of Business Research, 56(11), 877-885.Lee, M. C. (2009). Factors influencing the adoption of internet banking: An integration of TAM and TPB with PR and perceived benefit. Electronic Commerce Research and Applications, 8(3), 130-141.Lee, Younghwa, Kozar, Kenneth A., & Larsen, Kai R.T. (2003). The Technology Acceptance Model: Past, Present, and Future.Lim, N. (2003). Consumer perceived risk: sources versus consequences. Electronic Commerce Research and Application, 2(3), 216-228.Maddi, S. R. (1989). Personality Theories: A Comparative Analysis (5th ed.), Dorsey, Homewood, IL.Merchant, K. A. (1985). “Organizational Controls and Discretionary Program Decision Making: A Field Study” Accounting, Organizations and Society, Vol. 10, No. 1, 67-85.Mitchell, V. W. (1999). Consumer perceived risk: conceptualisations and models.Miyazaki, A. D., & Fernandez, A. (2001). Consumer perceptions of privacy and security risks for online shopping. Journal of Consumer Affairs, 35(1), 27-44.Palmer, J. W. & Markus, M. L. (2000). The performance impacts of quick response and strategic alignment in specialty retailing. Information Systems Research, 11(3), 241-259.PwC (2018), “PwC’s Digital Banking Consumer Survey: Mobile Users Set the Agenda,” June.Sandra, F., & Bo, S. (2003). Consumer patronage and risk perceptions in internet shopping. Journal of Business Research, 56(11), 867.Tornatzky, L.G., & Fleischer, M. (1990). The Processes of Technological Innovation. KY: Lexington.Van de Ven, A. H., & Drazin, R. (1985). The concept of fit in contingency theory. Research in Organizational Behavior, 7(4), 333-365.Venkatesh, V. (2006). Where To Go From Here? Thoughts on Future Directions for Research on Individual‐Level Technology Adoption with a Focus on Decision Making*. Decision Sciences, 37(4), 497-518.Venkatesh, V. and Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on Interventions. Decision Science.Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision Sciences.Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46 (2), 186-204.Venkatesh,V. (2000). Determinants of perceived ease of use: integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research.Venkatraman, N. (1989). The concept of fit in strategy research: toward verbal and statistical correspondence. Academy of Management Review, 14(3), 423-444.We Are Social (2019), “Global Digital 2019 reports,” January.Zhou, L., Dai, L., & Zhang, D. (2007). Online shopping acceptance model-A critical survey of consumer factors in online shopping. Journal of Electronic Commerce Research, 8(1), 41-62. 描述 碩士
國立政治大學
企業管理研究所(MBA學位學程)
107363030資料來源 http://thesis.lib.nccu.edu.tw/record/#G0107363030 資料類型 thesis dc.contributor.advisor 洪為璽 zh_TW dc.contributor.advisor Hung, Wei-Hsi en_US dc.contributor.author (Authors) 嚴昱婷 zh_TW dc.contributor.author (Authors) Yen, Yu-Ting en_US dc.creator (作者) 嚴昱婷 zh_TW dc.creator (作者) Yen, Yu-Ting en_US dc.date (日期) 2020 en_US dc.date.accessioned 3-Aug-2020 18:42:14 (UTC+8) - dc.date.available 3-Aug-2020 18:42:14 (UTC+8) - dc.date.issued (上傳時間) 3-Aug-2020 18:42:14 (UTC+8) - dc.identifier (Other Identifiers) G0107363030 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/131348 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 企業管理研究所(MBA學位學程) zh_TW dc.description (描述) 107363030 zh_TW dc.description.abstract (摘要) 網路銀行的發展打破了傳統實體銀行在分行空間及營業時間上的限制,使消費者不須出門且在任何時間點,皆可透過網路來獲取日常所需的金融服務,而台灣也在近年跟進,開始投入純網路銀行的建置及佈局,而純網路銀行與網路銀行最大的差異在於,純網路銀行沒有實體分行的設置,雖然其提供的金融服務與傳統銀行無異,但沒有營業人員的服務協助以及從開戶到交易操作全都必須在線上完成等因素,皆可能是消費者對於是否採用新型態銀行服務的一大考量。對於台灣國內來說,純網路銀行仍是一個新的概念,因此本研究從科技、個人、環境構面,以科技接受模式3及認知風險,來探討影響消費者對純網路銀行採用意願的關鍵因素。透過問卷調查與分析,本研究發現:1)科技構面中,輸出品質、成果展現及客觀使用對採用意願皆具顯著相關,其中輸出品質最具影響力且相關性最大,為採用意願之關鍵因素。2)個人構面中,電腦自我效能、電腦焦慮、財務風險、時間/便利風險及隱私風險對採用意願皆具顯著相關,其中電腦焦慮及隱私風險與採用意願的相關性最大,為影響之關鍵因素。3)環境構面中,主觀規範及知覺外部控制對採用意願皆具顯著相關,其中知覺外部控制最具影響力且相關性最大,為採用意願之關鍵因素。 zh_TW dc.description.abstract (摘要) The development of online banking has extended the boundaries of physical banks. Consumers can get financial service via Internet at anytime and anywhere. Taiwan has also followed up the trend in recent years, and invested in the development of virtual banking initiatives. The biggest difference between virtual banking and online banking is that virtual banking has no any physical branch. In regard to financial services, the virtual banking is with no different from traditional banks; yet, the lack of service assistance from staff could be a major consideration of consumer`s adoption intention on virtual banking. In Taiwan, virtual banking is still a new concept, so this research tends to explore the critical factors of consumer`s adoption intention on virtual banking from technology, personal, and environmental aspects as well as acceptance model 3 and risk perception theory.Based on the survey method, this study found: 1. In the technology aspect, output quality, result demonstrability and objective usability are all significantly related to the adoption intention. And output quality is the most influential and the most relevant to the adoption intention, which is also the critical factor. 2. In the personal aspect, computer self-efficacy, computer anxiety, financial risk, time/convenience risk and privacy risk are all significantly related to the adoption intention. Computer anxiety and privacy risk are the most relevant to the adoption intention. 3. In the environmental aspect, subjective norm and perceptions of external control are significantly related to the adoption intention. Perceptions of external control is the most influential and the most relevant to the adoption intention. Perceptions of external control is also the critical factors of consumer`s adoption intention on virtual banking. en_US dc.description.tableofcontents 圖目錄 5表目錄 6第壹章 緒論 8第一節 研究背景與動機 8第二節 研究目的與問題 14第三節 研究流程 17第貳章 文獻探討 18第一節 TPE (Technological-Personal-Environmental) 18第二節 科技接受模型3 (Technology Acceptance Model 3, TAM3)20第三節 認知風險 (Perceived Risks) 25第參章 研究方法 29第一節 研究架構與假設 29第二節 研究變項定義 31第三節 問卷設計 32第四節 資料分析方法 34第肆章 研究結果 37第一節 描述性統計 37第二節 信度與效度檢定 42第三節 皮爾森相關檢定 46第四節 迴歸分析 48第五節 控制變項對各自變項之影響 54第伍章 結論與建議 63第一節 研究結論 64第二節 管理意涵 67第三節 研究限制與未來研究建議 69參考文獻 72附錄一 正式問卷 77 zh_TW dc.format.extent 3181083 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0107363030 en_US dc.subject (關鍵詞) 純網路銀行 zh_TW dc.subject (關鍵詞) 科技接受模型3 zh_TW dc.subject (關鍵詞) 認知風險 zh_TW dc.subject (關鍵詞) Virtual banking en_US dc.subject (關鍵詞) TPE en_US dc.subject (關鍵詞) Acceptance model 3 en_US dc.subject (關鍵詞) Risk perception en_US dc.title (題名) 影響純網路銀行採用意願之關鍵因素-以科技、個人、環境觀點 zh_TW dc.title (題名) Critical Factors of Consumer`s Adoption Intention on Virtual Banking:A Technological–Personal–Environmental Perspective en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) 一、中文文獻王信淳 (2015)。純網路銀行及其監管問題研究。金融監管,(7),71-75。伍旭川 & 張翔 (2015)。我國純網路銀行的風險特徵與監管建議。TSINGHUA FINANCIAL REVIEW,(August),27–30。李谷震 (2015)。我國網路銀行風險及對監管產生的挑戰分析。產業與科技論壇,14(21),13–15。孟繁穎 (2015)。對純網路銀行風險特徵的認識及監管思考。長春金融高等專科學校學報,(1),23–27。林芬蘭 (2019)。純網路銀行發展暨其對金融體系之影響。財團法人俞國華文教基金會獎助出國專題研究報告書。武寧 (2017)。我國純網路銀行運行特徵及風險防範。合作經濟與科技,(4),74–75。邱峰 (2015)。新興金融業態-純互聯網銀行模式研究。吉林金融研究,(4),34–39。胡宸豪 (2016)。純網路银行風險監管制度硏究。上海社會科學院。財團法人台灣網路資訊中心 (2018)。2018台灣網路報告。國家發展委員會 (2019)。108年個人家戶數位機會調查報告。梁思莉 (2014)。我國網路銀行市場准入制度研究。重慶大學。陳一稀 (2014)。美國純網路銀行的興衰對中國的借鑑。互聯網金融,(299),58–62。黃華兵 & 馬磊 (2006)。為什麼純網路銀行還未成為銀行主導模式-新制度經濟學的視角。商場現代化,(468)。廖清信(譯) (1999)。電子銀行與電子貨幣活動的風險管理。劉書甯 (2018)。「日韓篇 跨界合作打造網銀新未來 傳統銀行大挑戰 網路霸主跨向金融」,台灣銀行家,103 期,7 月。盧志敏 (2001)。網路銀行的發展與影響。中央銀行季刊,23(1),47–62。二、英文文獻Avasthi, G., & Sharma, M. (2001). Information technology in banking: Challenges for regulators. Prajnan, XXIX(4), 343–351.Bahl, S. (2012). E-Banking : Challenges & policy implications. International Journal of Computing & Business Research.Bandura, A. (1986). The explanatory and predictive scope of self-efficacy theory. Journal of Social and Clinical Psychology, 4(3), 359–373.Barquin, Sonia and Vinayak HV (2016), “Building a Digital-Banking Business,” Mckinsey & Company, April.Basel Committee on Banking Supervision. (1998). Risk management for electronic banking and electronic money activities.Bauer, R.A. (1960). Consumer Behavior as Risk Taking. Dynamic Marketing for Changing World: American Marketing Association, 389-393.Bergeron, F., Raymond, L., & Rivard, S. (2001). Fit in strategic information technology management research: An empirical comparison of perspectives.Omega, 29(2), 125-142.Chang, H.-S., & Hsiao, H.-L. (2008). Examining the casual relationship among service recovery, perceived justice, perceived risk, and customer value in the hotel industry. The Service Industries Journal, 28(4), 513-528.Dandapani, K., Lassar, A., &Sharon, S. L. (2005). Virtual banking: Impetus and impediments. The International Journal of Finance, 17(2), 3512–3524.Davis, F.D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results. Massachusetts, United States: Sloan School of Management, Massachusetts Institute of Technology.Featherman, M. S., & Pavlou, P.A. (2003). Predicting e-services adoption : A perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451–474.Felt, A. P., Greenwood, K., & Wagner, D. (2011). The effectiveness of application permissions. Proceedings of the 2nd USENIX conference on Web application development, 7-7.Financial IT (2017), “Top 50 Digital Only Banks Ranking 2017,” Special Sibos & Money 20/20 Issue.Forsythe, S. M., & Shi, B. (2003). Consumer patronage and risk perceptions in Internet shopping. Journal of Business Research, 56(11), 867-875.Hair, J. F., Anderson. R. E., Tatham. R. L., & Black. W. C. (1992). Multivariate Data Analysis with Reading 3rd ed, New York: Macmillan.Power, J. D. (2017), “Mobile Banking Surges in China; Relationship Managers Remain Critical, J.D. Power Finds,” July 27.Jiang, Y., Chen, D., & Lai, F. (2010). Technological-Personal-Environmental (TPE) Framework: A Conceptual Model for Technology Acceptance at the Individual Level. Journal of International Technology & Information Management, 19(3), 89-98.Kansal, P. (2014). Online privacy concerns and consumer reactions: insights for future strategies. Journal of Indian Business Research, 6(3), 190-212.Kansal, P. (2016).Perceived risk and technology acceptance model in self-service banking - a study on the nature of mediation. South Asian Journal of Management, 23(2), 51-71.Kuisma, T., Laukkanen, T., & Hiltunen, M. (2007). Mapping the reasons for resistance to Internet banking: A means-end approach. International Journal of Information Management, 27(2), 75-85.Lee, K. S., & Tan, S. J. (2003). E-retailing versus physical retailing: a theoretical model and empirical test of consumer choice. Journal of Business Research, 56(11), 877-885.Lee, M. C. (2009). Factors influencing the adoption of internet banking: An integration of TAM and TPB with PR and perceived benefit. Electronic Commerce Research and Applications, 8(3), 130-141.Lee, Younghwa, Kozar, Kenneth A., & Larsen, Kai R.T. (2003). The Technology Acceptance Model: Past, Present, and Future.Lim, N. (2003). Consumer perceived risk: sources versus consequences. Electronic Commerce Research and Application, 2(3), 216-228.Maddi, S. R. (1989). Personality Theories: A Comparative Analysis (5th ed.), Dorsey, Homewood, IL.Merchant, K. A. (1985). “Organizational Controls and Discretionary Program Decision Making: A Field Study” Accounting, Organizations and Society, Vol. 10, No. 1, 67-85.Mitchell, V. W. (1999). Consumer perceived risk: conceptualisations and models.Miyazaki, A. D., & Fernandez, A. (2001). Consumer perceptions of privacy and security risks for online shopping. Journal of Consumer Affairs, 35(1), 27-44.Palmer, J. W. & Markus, M. L. (2000). The performance impacts of quick response and strategic alignment in specialty retailing. Information Systems Research, 11(3), 241-259.PwC (2018), “PwC’s Digital Banking Consumer Survey: Mobile Users Set the Agenda,” June.Sandra, F., & Bo, S. (2003). Consumer patronage and risk perceptions in internet shopping. Journal of Business Research, 56(11), 867.Tornatzky, L.G., & Fleischer, M. (1990). The Processes of Technological Innovation. KY: Lexington.Van de Ven, A. H., & Drazin, R. (1985). The concept of fit in contingency theory. Research in Organizational Behavior, 7(4), 333-365.Venkatesh, V. (2006). Where To Go From Here? Thoughts on Future Directions for Research on Individual‐Level Technology Adoption with a Focus on Decision Making*. Decision Sciences, 37(4), 497-518.Venkatesh, V. and Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on Interventions. Decision Science.Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision Sciences.Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46 (2), 186-204.Venkatesh,V. (2000). Determinants of perceived ease of use: integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research.Venkatraman, N. (1989). The concept of fit in strategy research: toward verbal and statistical correspondence. Academy of Management Review, 14(3), 423-444.We Are Social (2019), “Global Digital 2019 reports,” January.Zhou, L., Dai, L., & Zhang, D. (2007). Online shopping acceptance model-A critical survey of consumer factors in online shopping. Journal of Electronic Commerce Research, 8(1), 41-62. zh_TW dc.identifier.doi (DOI) 10.6814/NCCU202000670 en_US