Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 微時刻推薦系統:以餐廳推薦為例
A Micro-moments recommender system: A restaurant recommendation study
作者 余嘉翔
Yu, Chia-Hsiang
貢獻者 林怡伶
Lin, Yi-Ling
余嘉翔
Yu, Chia-Hsiang
關鍵詞 餐廳推薦
聊天機器人
微時刻
互動式推薦
restaurant recommendation
chatbot
micro-moments
interactive recommendation
日期 2020
上傳時間 2-Sep-2020 11:45:58 (UTC+8)
摘要 隨著智慧型手機的發展與普及,愈來愈多使用者頃向使用智慧型手機來獲取最即時的資訊。這種稱為「微時刻(Micro-Moments)」的使用者行為,通常伴隨著鮮明的使用者偏好、決策條件以及必須要在極短的時間內做出決定。使用者每次拿起手機的平均使用時間約為5分鐘,換句話說,系統必須要很快且精確瞭解使用者的需求,並快速提供合適的資訊。本研究透過聊天機器人建構一個以滿足使用者微時刻需求的互動式情境感知推薦系統,並以推薦餐廳為主題,探討如何獲取使用者的偏好以及當下的情境與意圖,並與推薦演算法結合,產生推薦給使用者。研究結果指出,本研究提出的微時刻推薦系統設計可以有效的獲得使用者偏好與意圖以及有考慮使用者當下意圖的演算法可以幫助使用者更快的找到最合適的餐廳並且是符合使用者的偏好。
More and more users tend to use their smartphones to support their micro-moment decisions. Micro-moments can be regards as an intent-rich moment when preferences and decision priorities are expressed clearly. Furthermore, the average time users spent on one moment is less than 5 minutes and they usually need to make a decision in a short time. The traditional information retrieval might not able to meet users’ need. Hence, the context-aware recommender is one of key solution to meet users’ need. Some studies have point out an interactive recommender design can better elicit user preference and contextual information. The emergence of chatbot which mimics a conversation with a real person has been regarded as an ideal conversational agent to build recommender systems. In this study, we proposed a micro-moments recommender system aims to recommend restaurants based on the combination of user’s long-term and short-term intention and is built on a chatbot. The result shows that the proposed micro-moments recommender system is able to let user find a restaurant at moment with less search effort and higher efficiency and help the user bring out their inner intention to get the best choice of restaurants, which is in line with his/her interest.
參考文獻 Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., & Steggles, P. (1999). Towards a better understanding of context and context-awareness. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Adomavicius, G., Mobasher, B., Ricci, F., & Tuzhilin, A. (2011). Context-aware recommender systems. AI Magazine, 32(3), 67–80.
Baltrunas, L., Ludwig, B., & Ricci, F. (2011). Matrix factorization techniques for context aware recommendation. RecSys’11 - Proceedings of the 5th ACM Conference on Recommender Systems.
Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual SUS scores mean. Journal of Usability Studies.
Basten, F., Ham, J., Midden, C., Gamberini, L., & Spagnolli, A. (2015). Does trigger location matter? The influence of localization and motivation on the persuasiveness of mobile purchase recommendations. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9072, pp. 121–132).
Bennett, J., & Lanning, S. (2007). The Netflix Prize. KDD Cup and Workshop.
Chen, J. (2016). A Study on the selection of fast food restaurant by Utar Kampar students using analytic hierarchy process (AHP) [Universiti Tunku Abdul Rahman]. http://eprints.utar.edu.my/2281/
Christakopoulou, K., Radlinski, F., & Hofmann, K. (2016). Towards conversational recommender systems. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’16, 3, 815–824.
Colombo-Mendoza, L. O., Valencia-García, R., Rodríguez-González, A., Alor-Hernández, G., & Samper-Zapater, J. J. (2015). RecomMetz: A context-aware knowledge-based mobile recommender system for movie showtimes. Expert Systems with Applications, 42(3), 1202–1222.
Deshpande, M., & Karypis, G. (2004). Item-based top-N recommendation algorithms. ACM Transactions on Information Systems.
Fogg, B. (2009). A behavior model for persuasive design. ACM International Conference Proceeding Series.
Hermoso, R., Dunkel, J., & Krause, J. (2016). Situation awareness for push-based recommendations in mobile devices. In W. Abramowicz, R. Alt, & B. Franczyk (Eds.), Lecture Notes in Business Information Processing (Vol. 255, pp. 117–129). Springer International Publishing.
Hu, Y., Volinsky, C., & Koren, Y. (2008). Collaborative filtering for implicit feedback datasets. Proceedings - IEEE International Conference on Data Mining, ICDM.
Ikemoto, Y., Asawavetvutt, V., Kuwabara, K., & Huang, H.-H. (2019). Tuning a conversation strategy for interactive recommendations in a chatbot setting. Journal of Information and Telecommunication, 3(2), 180–195.
Kilinc, C. C., Semiz, M., Katircioglu, E., & Unusan, Ç. (2013). Choosing restaurant for lunch in campus area by the compromise decision via AHP. International Journal of Economic Perspectives.
Knijnenburg, B. P., Reijmer, N. J. M., & Willemsen, M. C. (2011). Each to his own: How different users call for different interaction methods in recommender systems. RecSys’11 - Proceedings of the 5th ACM Conference on Recommender Systems.
Konstan, J. A., & Riedl, J. (2012). Recommender systems: From algorithms to user experience. In User Modeling and User-Adapted Interaction.
Lewis, J. R. (1995). IBM computer usability satisfaction questionnaires: Psychometric evaluation and instructions for use. International Journal of Human-Computer Interaction, 7(1), 57–78.
Lian, D., Zhao, C., Xie, X., Sun, G., Chen, E., & Rui, Y. (2014). GeoMF: Joint geographical modeling and matrix factorization for point-of-interest recommendation. In KDD ’14 Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 831–840).
Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing.
Loepp, B., Herrmanny, K., & Ziegler, J. (2015). Blended recommending: Integrating interactive information filtering and algorithmic recommender techniques. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, 975–984.
Missaoui, S., Kassem, F., Viviani, M., Agostini, A., Faiz, R., & Pasi, G. (2019). LOOKER: a mobile, personalized recommender system in the tourism domain based on social media user-generated content. Personal and Ubiquitous Computing, 23(2), 181–197.
Narducci, F., de Gemmis, M., Lops, P., & Semeraro, G. (2018). Improving the user experience with a conversational recommender system. In AI*IA 2018 -- Advances in Artificial Intelligence: Vol. 11298 LNAI (pp. 528–538).
Ng, D. (2006). Ranking Internet Search Results Based on Number of Mobile Device Visits to Physical Locations Related to the Search Results. Google Patents.
Ning, X., & Karypis, G. (2011). SLIM: Sparse Linear Methods for Top-N Recommender Systems. 2011 IEEE 11th International Conference on Data Mining, 497–506.
Oku, K., Nakajima, S., Miyazaki, J., & Uemura, S. (2006). Context-aware SVM for context-dependent information recommendation. Proceedings - IEEE International Conference on Mobile Data Management, 2006, 5–8.
Pu, P., & Chen, L. (2008). User-involved preference elicitation for product search and recommender systems. AI Magazine, 29(4), 93–103.
Pu, P., Chen, L., & Hu, R. (2012). Evaluating recommender systems from the user’s perspective: Survey of the state of the art. User Modeling and User-Adapted Interaction.
Ramirez-Garcia, X., & García-Valdez, M. (2014). Post-filtering for a restaurant context-aware recommender system. Studies in Computational Intelligence, 547, 695–707.
Ricci, F., & Quang, N. (2006). MobyRek: a conversational recommender system for on-the-move travellers. In Destination recommendation systems: behavioural foundations and applications (pp. 281–294). CABI.
Sun, Y., Yuan, N. J., Wang, Y., Xie, X., McDonald, K., & Zhang, R. (2016). Contextual intent tracking for personal assistants. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-Augu, 273–282.
Trattner, C., Oberegger, A., Eberhard, L., Parra, D., & Marinho, L. (2016). Understanding the impact of weather for POI recommendations. CEUR Workshop Proceedings.
Vakeel, K. A., & Ray, S. (2019). Points of interest recommendations based on check-in motivations. Tourism Analysis.
Villegas, N. M., & Müller, H. A. (2010). Managing dynamic context to optimize smart interactions and services. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Villegas, N. M., Sánchez, C., Díaz-Cely, J., & Tamura, G. (2018). Characterizing context-aware recommender systems: A systematic literature review. Knowledge-Based Systems, 140, 173–200.
Wang, X., Rosenblum, D., & Wang, Y. (2012). Context-aware mobile music recommendation for daily activities. MM 2012 - Proceedings of the 20th ACM International Conference on Multimedia, 99–108.
Wobbrock, J. O., Findlater, L., Gergle, D., & Higgins, J. J. (2011). The Aligned Rank Transform for nonparametric factorial analyses using only ANOVA procedures. Conference on Human Factors in Computing Systems - Proceedings.
Yang, L., Chen, J., Dell, N., Sobolev, M., Dunne, D., Naaman, M., Wang, Y., Tsangouri, C., & Estrin, D. (2019). How intention informed recommendations modulate choices: A field study of spoken word content. The Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019, 2169–2180.
Yang, L., Hsieh, C.-K., Yang, H., Pollak, J. P., Dell, N., Belongie, S., Cole, C., & Estrin, D. (2017). Yum-Me. ACM Transactions on Information Systems, 36(1), 1–31.
Yuan, Q., Cong, G., Ma, Z., Sun, A., & Magnenat-Thalmann, N. (2013). Time-aware point-of-interest recommendation. SIGIR 2013 - Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval.
Zhang, Y., & Chen, X. (2018). Explainable recommendation: A survey and new perspectives. FATREC 2018 Workshop: Responsible Recommendation.
Zhao, G., Fu, H., Song, R., Sakai, T., Xie, X., & Qian, X. (2019). Why you should listen to this song: Reason generation for explainable recommendation. IEEE International Conference on Data Mining Workshops, ICDMW, 2018-Novem, 1316–1322.
Zheng, Y., & Jose, A. A. (2019). Context-aware recommendations via sequential predictions. Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing - SAC ’19, April, 2525–2528.
Zheng, Y., Mobasher, B., & Burke, R. (2014). CSLIM: Contextual SLIM recommendation algorithms. RecSys 2014 - Proceedings of the 8th ACM Conference on Recommender Systems, 0(1), 301–304.
描述 碩士
國立政治大學
資訊管理學系
107356015
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0107356015
資料類型 thesis
dc.contributor.advisor 林怡伶zh_TW
dc.contributor.advisor Lin, Yi-Lingen_US
dc.contributor.author (Authors) 余嘉翔zh_TW
dc.contributor.author (Authors) Yu, Chia-Hsiangen_US
dc.creator (作者) 余嘉翔zh_TW
dc.creator (作者) Yu, Chia-Hsiangen_US
dc.date (日期) 2020en_US
dc.date.accessioned 2-Sep-2020 11:45:58 (UTC+8)-
dc.date.available 2-Sep-2020 11:45:58 (UTC+8)-
dc.date.issued (上傳時間) 2-Sep-2020 11:45:58 (UTC+8)-
dc.identifier (Other Identifiers) G0107356015en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/131492-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊管理學系zh_TW
dc.description (描述) 107356015zh_TW
dc.description.abstract (摘要) 隨著智慧型手機的發展與普及,愈來愈多使用者頃向使用智慧型手機來獲取最即時的資訊。這種稱為「微時刻(Micro-Moments)」的使用者行為,通常伴隨著鮮明的使用者偏好、決策條件以及必須要在極短的時間內做出決定。使用者每次拿起手機的平均使用時間約為5分鐘,換句話說,系統必須要很快且精確瞭解使用者的需求,並快速提供合適的資訊。本研究透過聊天機器人建構一個以滿足使用者微時刻需求的互動式情境感知推薦系統,並以推薦餐廳為主題,探討如何獲取使用者的偏好以及當下的情境與意圖,並與推薦演算法結合,產生推薦給使用者。研究結果指出,本研究提出的微時刻推薦系統設計可以有效的獲得使用者偏好與意圖以及有考慮使用者當下意圖的演算法可以幫助使用者更快的找到最合適的餐廳並且是符合使用者的偏好。zh_TW
dc.description.abstract (摘要) More and more users tend to use their smartphones to support their micro-moment decisions. Micro-moments can be regards as an intent-rich moment when preferences and decision priorities are expressed clearly. Furthermore, the average time users spent on one moment is less than 5 minutes and they usually need to make a decision in a short time. The traditional information retrieval might not able to meet users’ need. Hence, the context-aware recommender is one of key solution to meet users’ need. Some studies have point out an interactive recommender design can better elicit user preference and contextual information. The emergence of chatbot which mimics a conversation with a real person has been regarded as an ideal conversational agent to build recommender systems. In this study, we proposed a micro-moments recommender system aims to recommend restaurants based on the combination of user’s long-term and short-term intention and is built on a chatbot. The result shows that the proposed micro-moments recommender system is able to let user find a restaurant at moment with less search effort and higher efficiency and help the user bring out their inner intention to get the best choice of restaurants, which is in line with his/her interest.en_US
dc.description.tableofcontents Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Research Goal 4
1.3 Content Organization 5
Chapter 2 Literature Review 7
2.1 Micro-moments 7
2.2 Context-aware Recommendation 8
2.3 Interactive Recommender System 10
Chapter 3 The Proposed Framework 11
3.1 Long-term Preference 11
3.2 User Intention 13
3.3 Restaurant Dataset 13
3.4 Micro-moments Recommender 15
3.4.1. Context-aware recommendation 15
3.4.2. Spatial-temporal filtering 18
3.5 Chatbot 18
Chapter 4 Experimental Design 21
4.1 Experimental Setup 21
4.2 Experiment Process 22
4.3 Evaluation 22
4.3.1. Performance metrics & algorithms for comparison 22
4.3.2. System logs 23
4.3.3. System usability test 24
4.4 Factors considering in the micro-moments 24
Chapter 5 Analysis and Results 25
5.1 Algorithms Performance 26
5.1.1. MM-based approaches evaluation 26
5.1.2. Context-aware recommendation evaluation 27
5.2 Log-based Analysis 31
5.2.1. General Usage Patterns 31
5.2.2. Patterns of Restaurant Exploration 34
5.2.3. Exploration and User’s Interest 36
5.3 System Usability and User Satisfaction 37
Chapter 6 Discussion 39
6.1 Search Efforts and Efficiency 39
6.2 Intention Sharpening and Restaurant Exploration 40
6.3 User’s Satisfaction and Chatbot Design 42
Chapter 7 Conclusion 43
Appendix 1 – Chatbot Questions 45
Appendix 2 – CSUQ Questionnaire 45
Reference 46
zh_TW
dc.format.extent 9015886 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0107356015en_US
dc.subject (關鍵詞) 餐廳推薦zh_TW
dc.subject (關鍵詞) 聊天機器人zh_TW
dc.subject (關鍵詞) 微時刻zh_TW
dc.subject (關鍵詞) 互動式推薦zh_TW
dc.subject (關鍵詞) restaurant recommendationen_US
dc.subject (關鍵詞) chatboten_US
dc.subject (關鍵詞) micro-momentsen_US
dc.subject (關鍵詞) interactive recommendationen_US
dc.title (題名) 微時刻推薦系統:以餐廳推薦為例zh_TW
dc.title (題名) A Micro-moments recommender system: A restaurant recommendation studyen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., & Steggles, P. (1999). Towards a better understanding of context and context-awareness. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Adomavicius, G., Mobasher, B., Ricci, F., & Tuzhilin, A. (2011). Context-aware recommender systems. AI Magazine, 32(3), 67–80.
Baltrunas, L., Ludwig, B., & Ricci, F. (2011). Matrix factorization techniques for context aware recommendation. RecSys’11 - Proceedings of the 5th ACM Conference on Recommender Systems.
Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual SUS scores mean. Journal of Usability Studies.
Basten, F., Ham, J., Midden, C., Gamberini, L., & Spagnolli, A. (2015). Does trigger location matter? The influence of localization and motivation on the persuasiveness of mobile purchase recommendations. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9072, pp. 121–132).
Bennett, J., & Lanning, S. (2007). The Netflix Prize. KDD Cup and Workshop.
Chen, J. (2016). A Study on the selection of fast food restaurant by Utar Kampar students using analytic hierarchy process (AHP) [Universiti Tunku Abdul Rahman]. http://eprints.utar.edu.my/2281/
Christakopoulou, K., Radlinski, F., & Hofmann, K. (2016). Towards conversational recommender systems. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’16, 3, 815–824.
Colombo-Mendoza, L. O., Valencia-García, R., Rodríguez-González, A., Alor-Hernández, G., & Samper-Zapater, J. J. (2015). RecomMetz: A context-aware knowledge-based mobile recommender system for movie showtimes. Expert Systems with Applications, 42(3), 1202–1222.
Deshpande, M., & Karypis, G. (2004). Item-based top-N recommendation algorithms. ACM Transactions on Information Systems.
Fogg, B. (2009). A behavior model for persuasive design. ACM International Conference Proceeding Series.
Hermoso, R., Dunkel, J., & Krause, J. (2016). Situation awareness for push-based recommendations in mobile devices. In W. Abramowicz, R. Alt, & B. Franczyk (Eds.), Lecture Notes in Business Information Processing (Vol. 255, pp. 117–129). Springer International Publishing.
Hu, Y., Volinsky, C., & Koren, Y. (2008). Collaborative filtering for implicit feedback datasets. Proceedings - IEEE International Conference on Data Mining, ICDM.
Ikemoto, Y., Asawavetvutt, V., Kuwabara, K., & Huang, H.-H. (2019). Tuning a conversation strategy for interactive recommendations in a chatbot setting. Journal of Information and Telecommunication, 3(2), 180–195.
Kilinc, C. C., Semiz, M., Katircioglu, E., & Unusan, Ç. (2013). Choosing restaurant for lunch in campus area by the compromise decision via AHP. International Journal of Economic Perspectives.
Knijnenburg, B. P., Reijmer, N. J. M., & Willemsen, M. C. (2011). Each to his own: How different users call for different interaction methods in recommender systems. RecSys’11 - Proceedings of the 5th ACM Conference on Recommender Systems.
Konstan, J. A., & Riedl, J. (2012). Recommender systems: From algorithms to user experience. In User Modeling and User-Adapted Interaction.
Lewis, J. R. (1995). IBM computer usability satisfaction questionnaires: Psychometric evaluation and instructions for use. International Journal of Human-Computer Interaction, 7(1), 57–78.
Lian, D., Zhao, C., Xie, X., Sun, G., Chen, E., & Rui, Y. (2014). GeoMF: Joint geographical modeling and matrix factorization for point-of-interest recommendation. In KDD ’14 Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 831–840).
Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing.
Loepp, B., Herrmanny, K., & Ziegler, J. (2015). Blended recommending: Integrating interactive information filtering and algorithmic recommender techniques. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, 975–984.
Missaoui, S., Kassem, F., Viviani, M., Agostini, A., Faiz, R., & Pasi, G. (2019). LOOKER: a mobile, personalized recommender system in the tourism domain based on social media user-generated content. Personal and Ubiquitous Computing, 23(2), 181–197.
Narducci, F., de Gemmis, M., Lops, P., & Semeraro, G. (2018). Improving the user experience with a conversational recommender system. In AI*IA 2018 -- Advances in Artificial Intelligence: Vol. 11298 LNAI (pp. 528–538).
Ng, D. (2006). Ranking Internet Search Results Based on Number of Mobile Device Visits to Physical Locations Related to the Search Results. Google Patents.
Ning, X., & Karypis, G. (2011). SLIM: Sparse Linear Methods for Top-N Recommender Systems. 2011 IEEE 11th International Conference on Data Mining, 497–506.
Oku, K., Nakajima, S., Miyazaki, J., & Uemura, S. (2006). Context-aware SVM for context-dependent information recommendation. Proceedings - IEEE International Conference on Mobile Data Management, 2006, 5–8.
Pu, P., & Chen, L. (2008). User-involved preference elicitation for product search and recommender systems. AI Magazine, 29(4), 93–103.
Pu, P., Chen, L., & Hu, R. (2012). Evaluating recommender systems from the user’s perspective: Survey of the state of the art. User Modeling and User-Adapted Interaction.
Ramirez-Garcia, X., & García-Valdez, M. (2014). Post-filtering for a restaurant context-aware recommender system. Studies in Computational Intelligence, 547, 695–707.
Ricci, F., & Quang, N. (2006). MobyRek: a conversational recommender system for on-the-move travellers. In Destination recommendation systems: behavioural foundations and applications (pp. 281–294). CABI.
Sun, Y., Yuan, N. J., Wang, Y., Xie, X., McDonald, K., & Zhang, R. (2016). Contextual intent tracking for personal assistants. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-Augu, 273–282.
Trattner, C., Oberegger, A., Eberhard, L., Parra, D., & Marinho, L. (2016). Understanding the impact of weather for POI recommendations. CEUR Workshop Proceedings.
Vakeel, K. A., & Ray, S. (2019). Points of interest recommendations based on check-in motivations. Tourism Analysis.
Villegas, N. M., & Müller, H. A. (2010). Managing dynamic context to optimize smart interactions and services. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Villegas, N. M., Sánchez, C., Díaz-Cely, J., & Tamura, G. (2018). Characterizing context-aware recommender systems: A systematic literature review. Knowledge-Based Systems, 140, 173–200.
Wang, X., Rosenblum, D., & Wang, Y. (2012). Context-aware mobile music recommendation for daily activities. MM 2012 - Proceedings of the 20th ACM International Conference on Multimedia, 99–108.
Wobbrock, J. O., Findlater, L., Gergle, D., & Higgins, J. J. (2011). The Aligned Rank Transform for nonparametric factorial analyses using only ANOVA procedures. Conference on Human Factors in Computing Systems - Proceedings.
Yang, L., Chen, J., Dell, N., Sobolev, M., Dunne, D., Naaman, M., Wang, Y., Tsangouri, C., & Estrin, D. (2019). How intention informed recommendations modulate choices: A field study of spoken word content. The Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019, 2169–2180.
Yang, L., Hsieh, C.-K., Yang, H., Pollak, J. P., Dell, N., Belongie, S., Cole, C., & Estrin, D. (2017). Yum-Me. ACM Transactions on Information Systems, 36(1), 1–31.
Yuan, Q., Cong, G., Ma, Z., Sun, A., & Magnenat-Thalmann, N. (2013). Time-aware point-of-interest recommendation. SIGIR 2013 - Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval.
Zhang, Y., & Chen, X. (2018). Explainable recommendation: A survey and new perspectives. FATREC 2018 Workshop: Responsible Recommendation.
Zhao, G., Fu, H., Song, R., Sakai, T., Xie, X., & Qian, X. (2019). Why you should listen to this song: Reason generation for explainable recommendation. IEEE International Conference on Data Mining Workshops, ICDMW, 2018-Novem, 1316–1322.
Zheng, Y., & Jose, A. A. (2019). Context-aware recommendations via sequential predictions. Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing - SAC ’19, April, 2525–2528.
Zheng, Y., Mobasher, B., & Burke, R. (2014). CSLIM: Contextual SLIM recommendation algorithms. RecSys 2014 - Proceedings of the 8th ACM Conference on Recommender Systems, 0(1), 301–304.
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU202001509en_US