學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

題名 最佳化多視角無人機燈光秀
Multi-Angle-View Drone Light Show
作者 翁愷均
Weng, Kai-Chun
貢獻者 紀明德
Chi, Ming-Te
翁愷均
Weng, Kai-Chun
關鍵詞 三向圖
無人機燈光秀
整數規劃
3D Ambigram
Drone Light Show
Integer Programming
日期 2020
上傳時間 2-Sep-2020 12:15:13 (UTC+8)
摘要 近年來無人機相關技術蓬勃發展,除了傳統軍事應用外也可應用於空拍目的,甚至加裝LED燈藉由編隊隊型與燈號轉換完成一場無人機燈光表演,這類型的表演也因為可客制化的特性被廣泛應用於各類慶典。然而目前大多數無人機燈光表演依舊仰賴專業人員設計圖案與規劃路徑,此外,無人機也存在著最佳觀賞位置,為了擁有最佳的觀看體驗,群眾也常會聚集在特定區域造成壅塞。
本研究針對現行無人機飛行表演提出一種可供更多視角觀賞之情境,運用visual hull的概念為每個觀賞點劃出符合輸入圖形之候選區域,並且利用整數規劃及相關方法建立數學模型,解決不同角度輸入圖片互相矛盾的問題,以最低數量的無人機構成可供多視角觀賞之靜態無人機結構。透過在每組靜態無人機多視角結構之間找尋最合適的對應點作為各個階段間的飛行起終點,並使用即時避障技術在每台無人機彼此不發生碰撞的情況下生成無人機最短飛行路徑動畫。整個流程最後於模擬環境中展示,透過結果與實驗數據分析本研究方法優缺點。
Drones, or precisely quadrotors’, have increased use not only in the field of robotics, but also in entertainment. Coordinate multiple drones in a fashion manner to form visual presentations with equipped LEDs, is known as drone light shows. Such performance offers visual enjoyment for a large area of the audience, especially in festivals. However, most current drone light shows are manually coordinated by personnel using the software. Furthermore, drone light shows have a limited viewing range, which limits the audience to get a better view on the actual performance. This paper proposes a method to provide multiple views of visual presentation in accordance with different viewing angles. The algorithm uses the concept of the visual hull to draw out candidate areas that form the input images and uses constraint and weights classification to solve graphics contradiction, hence reducing the number of drones needed to form a multi-angle view structure for visual presentation. To allow such a structure to perform animation, the most suitable corresponding point in two different structures is located, and the shortest flight path without collision is generated. Experiments conducted in the simulation provides more insight and discussion, and each factor is visualized and considered to provide a better understanding of a multi-angle view drone light show.
參考文獻 [1] Abduladhem A. Ali, Abdulmuttalib T. Rashid, Mattia Frasca, and Luigi Fortuna. Analgorithm for multi-robot collision-free navigation based on shortest distance.Roboticsand Autonomous Systems, 75:119–128, 2016.
[2] Jur Van Den Berg, Ming Lin, and Dinesh Manocha. Reciprocal velocity obstacles forreal-time multi-agent navigation.2008 IEEE International Conference on Robotics andAutomation, 2008.
[3] G. Bradski. The OpenCV Library.Dr. Dobb’s Journal of Software Tools, 2000.
[4] Atsushi Fujimori, Masato Teramoto, Peter N. Nikiforuk, and Madan M. Gupta. Coop-erative collision avoidance between multiple mobile robots.Journal of Robotic Systems,17(7):347–363, 2000.
[5] Stephen. J. Guy, Jatin Chhugani, Changkyu Kim, Nadathur Satish, Ming Lin, Di-nesh Manocha, and Pradeep Dubey. Clearpath.Proceedings of the 2009 ACM SIG-GRAPH/Eurographics Symposium on Computer Animation - SCA 09, 2009.
[6] Kai-Wen Hsiao, Jia-Bin Huang, and Hung-Kuo Chu. Multi-view wire art.ACM Transac-tions on Graphics, 37(6):1–11, Apr 2018.
[7] Kalin Kolev, Maria Klodt, Thomas Brox, and Daniel Cremers. Continuous global op-timization in multiview 3d reconstruction.International Journal of Computer Vision,84(1):80–96, Jan 2009.
[8] A. Laurentini. The visual hull concept for silhouette-based image understanding.IEEETransactions on Pattern Analysis and Machine Intelligence, 16(2):150–162, 1994.
[9] Niloy J. Mitra and Mark Pauly. Shadow art.ACM Transactions on Graphics, 28(5):1, Jan2009.
[10] Laurent Perron and Vincent Furnon. Or-tools.
[11] M. A Shah and N. Aouf. 3d cooperative pythagorean hodograph path planning and ob-stacle avoidance for multiple uavs.2010 IEEE 9th International Conference on CybernticIntelligent Systems, 2010.
[12] Matthew Trager, Martial Hebert, and Jean Ponce. Consistency of silhouettes and theirduals.2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
[13] Weidan Xiong, Pengbo Zhang, Pedro V. Sander, and Ajay Joneja. Shape-inspired architec-tural design.Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphicsand Games - I3D 18, 2018.
[14] IgorˇSkrjanc and Gregor Klanˇcar.Optimal cooperative collision avoidance betweenmultiple robots based on bernstein–b ́ezier curves.Robotics and Autonomous Systems,58(1):1–9, 2010.
描述 碩士
國立政治大學
資訊科學系
106753033
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0106753033
資料類型 thesis
dc.contributor.advisor 紀明德zh_TW
dc.contributor.advisor Chi, Ming-Teen_US
dc.contributor.author (Authors) 翁愷均zh_TW
dc.contributor.author (Authors) Weng, Kai-Chunen_US
dc.creator (作者) 翁愷均zh_TW
dc.creator (作者) Weng, Kai-Chunen_US
dc.date (日期) 2020en_US
dc.date.accessioned 2-Sep-2020 12:15:13 (UTC+8)-
dc.date.available 2-Sep-2020 12:15:13 (UTC+8)-
dc.date.issued (上傳時間) 2-Sep-2020 12:15:13 (UTC+8)-
dc.identifier (Other Identifiers) G0106753033en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/131630-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學系zh_TW
dc.description (描述) 106753033zh_TW
dc.description.abstract (摘要) 近年來無人機相關技術蓬勃發展,除了傳統軍事應用外也可應用於空拍目的,甚至加裝LED燈藉由編隊隊型與燈號轉換完成一場無人機燈光表演,這類型的表演也因為可客制化的特性被廣泛應用於各類慶典。然而目前大多數無人機燈光表演依舊仰賴專業人員設計圖案與規劃路徑,此外,無人機也存在著最佳觀賞位置,為了擁有最佳的觀看體驗,群眾也常會聚集在特定區域造成壅塞。
本研究針對現行無人機飛行表演提出一種可供更多視角觀賞之情境,運用visual hull的概念為每個觀賞點劃出符合輸入圖形之候選區域,並且利用整數規劃及相關方法建立數學模型,解決不同角度輸入圖片互相矛盾的問題,以最低數量的無人機構成可供多視角觀賞之靜態無人機結構。透過在每組靜態無人機多視角結構之間找尋最合適的對應點作為各個階段間的飛行起終點,並使用即時避障技術在每台無人機彼此不發生碰撞的情況下生成無人機最短飛行路徑動畫。整個流程最後於模擬環境中展示,透過結果與實驗數據分析本研究方法優缺點。
zh_TW
dc.description.abstract (摘要) Drones, or precisely quadrotors’, have increased use not only in the field of robotics, but also in entertainment. Coordinate multiple drones in a fashion manner to form visual presentations with equipped LEDs, is known as drone light shows. Such performance offers visual enjoyment for a large area of the audience, especially in festivals. However, most current drone light shows are manually coordinated by personnel using the software. Furthermore, drone light shows have a limited viewing range, which limits the audience to get a better view on the actual performance. This paper proposes a method to provide multiple views of visual presentation in accordance with different viewing angles. The algorithm uses the concept of the visual hull to draw out candidate areas that form the input images and uses constraint and weights classification to solve graphics contradiction, hence reducing the number of drones needed to form a multi-angle view structure for visual presentation. To allow such a structure to perform animation, the most suitable corresponding point in two different structures is located, and the shortest flight path without collision is generated. Experiments conducted in the simulation provides more insight and discussion, and each factor is visualized and considered to provide a better understanding of a multi-angle view drone light show.en_US
dc.description.tableofcontents 摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 問題描述 3
1.3 論文貢獻 4
1.4 論文章節架構 4
第二章 相關研究 5
2.1 多視角模型與結構 5
2.2 多機避障路徑 7
第三章 研究方法與步驟 8
3.1 系統架構 8
3.2 多視角結構與投影誤差 9
3.3 最佳化模型 12
3.4 圖形簡化與範圍搜尋 13
3.5 模擬飛行路徑 15
3.5.1 任務分配問題 15
3.5.2 多機避障路徑 16
第四章 實驗結果與討論 17
4.1 實驗環境設置 17
4.2 結果顯示介面 18
4.3 多視角結構實驗結果 19
4.3.1 輸入圖片類型 23
4.3.2 權重 24
4.3.3 輪廓簡化程度 26
4.3.4 搜尋範圍之影響 27
4.3.5 觀賞者位置角度 27
4.4 最終無人機飛行路徑動畫 28
4.5 實作環境 29
4.6 限制 29
第五章 結論與未來展望 30
參考文獻 31
zh_TW
dc.format.extent 4636693 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0106753033en_US
dc.subject (關鍵詞) 三向圖zh_TW
dc.subject (關鍵詞) 無人機燈光秀zh_TW
dc.subject (關鍵詞) 整數規劃zh_TW
dc.subject (關鍵詞) 3D Ambigramen_US
dc.subject (關鍵詞) Drone Light Showen_US
dc.subject (關鍵詞) Integer Programmingen_US
dc.title (題名) 最佳化多視角無人機燈光秀zh_TW
dc.title (題名) Multi-Angle-View Drone Light Showen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] Abduladhem A. Ali, Abdulmuttalib T. Rashid, Mattia Frasca, and Luigi Fortuna. Analgorithm for multi-robot collision-free navigation based on shortest distance.Roboticsand Autonomous Systems, 75:119–128, 2016.
[2] Jur Van Den Berg, Ming Lin, and Dinesh Manocha. Reciprocal velocity obstacles forreal-time multi-agent navigation.2008 IEEE International Conference on Robotics andAutomation, 2008.
[3] G. Bradski. The OpenCV Library.Dr. Dobb’s Journal of Software Tools, 2000.
[4] Atsushi Fujimori, Masato Teramoto, Peter N. Nikiforuk, and Madan M. Gupta. Coop-erative collision avoidance between multiple mobile robots.Journal of Robotic Systems,17(7):347–363, 2000.
[5] Stephen. J. Guy, Jatin Chhugani, Changkyu Kim, Nadathur Satish, Ming Lin, Di-nesh Manocha, and Pradeep Dubey. Clearpath.Proceedings of the 2009 ACM SIG-GRAPH/Eurographics Symposium on Computer Animation - SCA 09, 2009.
[6] Kai-Wen Hsiao, Jia-Bin Huang, and Hung-Kuo Chu. Multi-view wire art.ACM Transac-tions on Graphics, 37(6):1–11, Apr 2018.
[7] Kalin Kolev, Maria Klodt, Thomas Brox, and Daniel Cremers. Continuous global op-timization in multiview 3d reconstruction.International Journal of Computer Vision,84(1):80–96, Jan 2009.
[8] A. Laurentini. The visual hull concept for silhouette-based image understanding.IEEETransactions on Pattern Analysis and Machine Intelligence, 16(2):150–162, 1994.
[9] Niloy J. Mitra and Mark Pauly. Shadow art.ACM Transactions on Graphics, 28(5):1, Jan2009.
[10] Laurent Perron and Vincent Furnon. Or-tools.
[11] M. A Shah and N. Aouf. 3d cooperative pythagorean hodograph path planning and ob-stacle avoidance for multiple uavs.2010 IEEE 9th International Conference on CybernticIntelligent Systems, 2010.
[12] Matthew Trager, Martial Hebert, and Jean Ponce. Consistency of silhouettes and theirduals.2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
[13] Weidan Xiong, Pengbo Zhang, Pedro V. Sander, and Ajay Joneja. Shape-inspired architec-tural design.Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphicsand Games - I3D 18, 2018.
[14] IgorˇSkrjanc and Gregor Klanˇcar.Optimal cooperative collision avoidance betweenmultiple robots based on bernstein–b ́ezier curves.Robotics and Autonomous Systems,58(1):1–9, 2010.
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU202001678en_US