學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

題名 機器學習識別古典及量子自旋模型相態
Identifying phases of classical and quantum spin models with machine learning
作者 林恆毅
Lin, Heng-Yi
貢獻者 林瑜琤
Lin, Yu-Cheng
林恆毅
Lin, Heng-Yi
關鍵詞 深度學習
多層感知器
捲積神經網路
三角量子反鐵磁
二維古典易辛模型
deep learning
multilayer perceptron
convolutional neural network
triangular quantum Ising antiferromagnet
two-dimensional classical Ising model
日期 2020
上傳時間 2-Sep-2020 12:17:00 (UTC+8)
摘要 三角易辛(Ising)反鐵磁在絕對零度因幾何挫折性而不具磁性。有趣的是,具量子效應的橫向磁場可誘發易辛反鐵磁零溫基態之有序性,產生具Z6 對稱破缺的時鐘態;這個零溫有序態可由更強的橫向磁場或有限溫度破壞。在絕對零度,一量子臨界點區分弱場下的有序時鐘態與強場下的無序順磁態。而在有限溫度,一Kosterlitz-Thouless相態區隔了低溫的時鐘態及高溫的順磁態。我們以量子蒙地卡羅方法針對許多不同溫度值及橫場值產生自旋組態,接著藉機器學習技術的多層感知器和捲積神經網路訓練機器辨識自旋組態與相態的關係,再以更多的自旋組態使神經網路識別其對應的相態。上述機器學習方法可頗精確辨識古典易辛模型的簡單相態,但對我們主要考慮的三角反鐵磁相態卻無法呈現良好的辨識力。
The triangular Ising antiferromagnet has no magnetic order down to zero temperature due to geometrical frustration. Interestingly, a weak transverse field, introducing quantum fluctuations, can induce magnetic order in the triangular antiferromagnet at zero temperature, resulting in the clock phase with a broken Z6 symmetry; this ordered clock phase can be destroyed by a strong transverse field or at finite temperature. At T=0, there is a quantum critical point separating the clock phase in weak fields and a paramagnetic phase in strong fields; at finite temperature, the antiferromagnet exhibits an extended Kosterlitz-Thouless (KT) phase intervening between the clock and paramagnetic phases. We generate spin configurations of the triangular antiferromagnet at different temperatures and transverse fields by quantum Monte Carlo (QMC) simulations. We attempt to use supervised machine learning techniques via multilayer perceptrons and convolutional neural networks to classify the phases of the antiferromagnetic system, solely based on spin configurations sampled with QMC. We find that the neural network models perform the classification task with a 70% accuracy for the triangular quantum antiferromagnet, while successfully distinguishing the classical Ising states with more than 90% accuracy.
參考文獻 [1] G. H. Wannier, Phys. Rev. 79, 357 (1950).
[2] Y. Jiang and T. Emig, Phys. Rev. B 73,104452 (2006).
[3] S. V. Isakov and R. Moessner, Physical Review B 68 (2003).
[4] M. Žukovič, L. Mižišin, and A. Bobák, Acta Physica Polonica A 126, 40 (2014).
[5] 張鎮宇, 三角晶格易辛反鐵磁之量子相變, Master’s thesis, 國立政治大學,
2017.
[6] A. W. Sandvik and J. Kurkijärvi, Phys. Rev. B 43, 5950 (1991).
[7] R. G. Melko, Stochastic Series Expansion Quantum Monte Carlo, pages 185–
206, Springer, Berlin, Heidelberg, 2013.
[8] G. Carleo et al., Rev. Mod. Phys. 91, 045002 (2019).
[9] P. Mehta et al., Physics Reports 810, 1 (2019).
[10] TensorFlow, https://www.tensorflow.org/.
[11] Keras, https://keras.io/.
[12] L. Bottou, Stochastic gradient descent tricks, in Neural networks: Tricks of
the trade, pages 421–436, Springer, 2012.
[13] D. P. Kingma and J. Ba, arXiv: 1412.6980 (2014).
[14] D. E. Rumelhart and D. Zipser, Cognitive science 9, 75 (1985).
31
[15] M. A. Nielsen, Neural networks and deep learning, Determination press San
Francisco, CA, 2015.
[16] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
J. Mach. Learn. Res. 15, 1929 (2014).
[17] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training
by reducing internal covariate shift, in Proceedings of the 32nd International
Conference on International Conference on Machine Learning - Volume
37, ICML’15, page 448, JMLR.org, 2015.
[18] S. Santurkar, D. Tsipras, A. Ilyas, and A. Mądry, How does batch normalization
help optimization?, in Proceedings of the 32nd International Conference on
Neural Information Processing Systems, NIPS’18, page 2488, Red Hook, NY,
USA, 2018, Curran Associates Inc.
[19] P. Mehta and D. J. Schwab, arXiv 1410.3831 (2014).
[20] DeepLearning series: Convolutional Neural Networks,
https://mc.ai/deeplearningseriesconvolutionalneuralnetworks/.
描述 碩士
國立政治大學
應用物理研究所
106755007
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0106755007
資料類型 thesis
dc.contributor.advisor 林瑜琤zh_TW
dc.contributor.advisor Lin, Yu-Chengen_US
dc.contributor.author (Authors) 林恆毅zh_TW
dc.contributor.author (Authors) Lin, Heng-Yien_US
dc.creator (作者) 林恆毅zh_TW
dc.creator (作者) Lin, Heng-Yien_US
dc.date (日期) 2020en_US
dc.date.accessioned 2-Sep-2020 12:17:00 (UTC+8)-
dc.date.available 2-Sep-2020 12:17:00 (UTC+8)-
dc.date.issued (上傳時間) 2-Sep-2020 12:17:00 (UTC+8)-
dc.identifier (Other Identifiers) G0106755007en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/131638-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用物理研究所zh_TW
dc.description (描述) 106755007zh_TW
dc.description.abstract (摘要) 三角易辛(Ising)反鐵磁在絕對零度因幾何挫折性而不具磁性。有趣的是,具量子效應的橫向磁場可誘發易辛反鐵磁零溫基態之有序性,產生具Z6 對稱破缺的時鐘態;這個零溫有序態可由更強的橫向磁場或有限溫度破壞。在絕對零度,一量子臨界點區分弱場下的有序時鐘態與強場下的無序順磁態。而在有限溫度,一Kosterlitz-Thouless相態區隔了低溫的時鐘態及高溫的順磁態。我們以量子蒙地卡羅方法針對許多不同溫度值及橫場值產生自旋組態,接著藉機器學習技術的多層感知器和捲積神經網路訓練機器辨識自旋組態與相態的關係,再以更多的自旋組態使神經網路識別其對應的相態。上述機器學習方法可頗精確辨識古典易辛模型的簡單相態,但對我們主要考慮的三角反鐵磁相態卻無法呈現良好的辨識力。zh_TW
dc.description.abstract (摘要) The triangular Ising antiferromagnet has no magnetic order down to zero temperature due to geometrical frustration. Interestingly, a weak transverse field, introducing quantum fluctuations, can induce magnetic order in the triangular antiferromagnet at zero temperature, resulting in the clock phase with a broken Z6 symmetry; this ordered clock phase can be destroyed by a strong transverse field or at finite temperature. At T=0, there is a quantum critical point separating the clock phase in weak fields and a paramagnetic phase in strong fields; at finite temperature, the antiferromagnet exhibits an extended Kosterlitz-Thouless (KT) phase intervening between the clock and paramagnetic phases. We generate spin configurations of the triangular antiferromagnet at different temperatures and transverse fields by quantum Monte Carlo (QMC) simulations. We attempt to use supervised machine learning techniques via multilayer perceptrons and convolutional neural networks to classify the phases of the antiferromagnetic system, solely based on spin configurations sampled with QMC. We find that the neural network models perform the classification task with a 70% accuracy for the triangular quantum antiferromagnet, while successfully distinguishing the classical Ising states with more than 90% accuracy.en_US
dc.description.tableofcontents 致謝 i
摘要 iii
Abstract v
Contents vii
1 緒論 1
2 自旋模型 3
2.1 二維古典易辛模型 3
2.2 三角量子易辛模型 4
3 自旋組態採樣 7
3.1 古典易辛模型採樣方法 7
3.2 量子三角反鐵磁模型採樣方法 10
4 深度學習自旋組態 13
4.1 多層感知器 15
4.2 捲積神經網路 17
4.3 古典易辛模型相態的分類 19
4.3.1 MLP 模型的學習結果 20
4.3.2 CNN 模型的學習結果 22
4.4 量子三角反鐵磁相態的分類 23
5 結論 29
參考文獻 31
zh_TW
dc.format.extent 4639413 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0106755007en_US
dc.subject (關鍵詞) 深度學習zh_TW
dc.subject (關鍵詞) 多層感知器zh_TW
dc.subject (關鍵詞) 捲積神經網路zh_TW
dc.subject (關鍵詞) 三角量子反鐵磁zh_TW
dc.subject (關鍵詞) 二維古典易辛模型zh_TW
dc.subject (關鍵詞) deep learningen_US
dc.subject (關鍵詞) multilayer perceptronen_US
dc.subject (關鍵詞) convolutional neural networken_US
dc.subject (關鍵詞) triangular quantum Ising antiferromagneten_US
dc.subject (關鍵詞) two-dimensional classical Ising modelen_US
dc.title (題名) 機器學習識別古典及量子自旋模型相態zh_TW
dc.title (題名) Identifying phases of classical and quantum spin models with machine learningen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] G. H. Wannier, Phys. Rev. 79, 357 (1950).
[2] Y. Jiang and T. Emig, Phys. Rev. B 73,104452 (2006).
[3] S. V. Isakov and R. Moessner, Physical Review B 68 (2003).
[4] M. Žukovič, L. Mižišin, and A. Bobák, Acta Physica Polonica A 126, 40 (2014).
[5] 張鎮宇, 三角晶格易辛反鐵磁之量子相變, Master’s thesis, 國立政治大學,
2017.
[6] A. W. Sandvik and J. Kurkijärvi, Phys. Rev. B 43, 5950 (1991).
[7] R. G. Melko, Stochastic Series Expansion Quantum Monte Carlo, pages 185–
206, Springer, Berlin, Heidelberg, 2013.
[8] G. Carleo et al., Rev. Mod. Phys. 91, 045002 (2019).
[9] P. Mehta et al., Physics Reports 810, 1 (2019).
[10] TensorFlow, https://www.tensorflow.org/.
[11] Keras, https://keras.io/.
[12] L. Bottou, Stochastic gradient descent tricks, in Neural networks: Tricks of
the trade, pages 421–436, Springer, 2012.
[13] D. P. Kingma and J. Ba, arXiv: 1412.6980 (2014).
[14] D. E. Rumelhart and D. Zipser, Cognitive science 9, 75 (1985).
31
[15] M. A. Nielsen, Neural networks and deep learning, Determination press San
Francisco, CA, 2015.
[16] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
J. Mach. Learn. Res. 15, 1929 (2014).
[17] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training
by reducing internal covariate shift, in Proceedings of the 32nd International
Conference on International Conference on Machine Learning - Volume
37, ICML’15, page 448, JMLR.org, 2015.
[18] S. Santurkar, D. Tsipras, A. Ilyas, and A. Mądry, How does batch normalization
help optimization?, in Proceedings of the 32nd International Conference on
Neural Information Processing Systems, NIPS’18, page 2488, Red Hook, NY,
USA, 2018, Curran Associates Inc.
[19] P. Mehta and D. J. Schwab, arXiv 1410.3831 (2014).
[20] DeepLearning series: Convolutional Neural Networks,
https://mc.ai/deeplearningseriesconvolutionalneuralnetworks/.
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU202001705en_US