Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 以量子電腦模擬量子自旋鏈
Simulating quantum spin chains on a quantum computer
作者 李佳豪
Lee, Jia-Hao
貢獻者 林瑜琤<br>許琇娟
Lin, Yu-Cheng<br>Hsu, Hsiu-Chuan
李佳豪
Lee, Jia-Hao
關鍵詞 量子電路
量子自旋鏈
變分量子特徵值解法
量子糾纏
量子費雪訊息
IBM-Q
Qiskit
Quantum circuit
Quantum spin chain
Variational Quantum Eigensolver (VQE)
Quantum entanglement
Quantum Fisher information
日期 2020
上傳時間 2-Sep-2020 14:08:38 (UTC+8)
摘要 我們利用雲端 IBM-Q 量子電腦及其搭配的程式套件 Qiskit 來探討量子自旋鏈的基態性質及淬火動力學。我們先在傳統電腦上運用變分量子特徵值解法求得自旋鏈的近似基態波函數,再以量子電腦或 Qiskit 提供的模擬器測量磁化量、量子費雪訊息等觀察量。我們根據所得的結果討論變分法及目前量子電腦在處理量子多體問題上的侷限。
We study ground-state properties and quench dynamics of the quantum Ising chain using IBM’s cloud-based quantum computer and its programming framework Qiskit. The approximate ground states of the spin chain are obtained by means of the Variational Quantum Eigensolver (VQE), implemented on conventional computers. Measurements of several observables, such as magnetization and quantum Fisher information, for the ground states are then carried out on a quantum computer or on a simulator provided by Qiskit. Based on our results, we discuss some limitations of the VQE and its implementation on a quantum computer for solving the quantum many-body problem.
參考文獻 [1] R. P. Feynman, Int. J. Theor. Phys 21 (1982).
[2] The Q# Programming Language, https://docs.microsoft.com/enus/quantum/.
[3] Cirq, https://cirq.readthedocs.io/en/stable.
[4] Qiskit, https://qiskit.org/.
[5] A. Barenco et al., Physical Review A 52, 3457–3467 (1995).
[6] A. Peruzzo et al., Nature communications 5, 4213 (2014).
[7] G. Nannicini, Physical Review E 99, 013304 (2019).
[8] M. J. Powell, A direct search optimization method that models the objective and constraint functions by linear interpolation, in Advances in Optimization and Numerical Analysis. Mathematics and Its Applications, pages 51–67, 1994.
[9] J. C. Spall, Johns Hopkins apl technical digest 19, 482 (1998).
[10] G. Vidal, Physical Review Letters 93 (2004).
[11] M. Suzuki, Communications in Mathematical Physics 51, 183 (1976).
[12] N. Hatano and M. Suzuki, Lecture Notes in Physics , 37-68 (2005).
[13] E. Gustafson, Y. Meurice, and J. Unmuth-Yockey, Physical Review D 99 (2019).
[14] A. Smith, M. S. Kim, F. Pollmann, and J. Knolle, npj Quantum Information 5 (2019).
[15] A. W. Sandvik, Computational studies of quantum spin systems, in AIP Conference Proceedings, volume 1297, pages 135–338, American Institute of Physics, 2010.
[16] H. F. Song et al., Physical Review B 85 (2012).
[17] P. Hyllus et al., Physical Review A 85 (2012).
[18] G. Tóth, Phys. Rev. A 85, 022322 (2012).
[19] O. Gühne, G. Tóth, and H. J. Briegel, New Journal of Physics 7, 229–229 (2005).
[20] QuTiP: Quantum Toolbox in Python, http://qutip.org/.
描述 碩士
國立政治大學
應用物理研究所
107755004
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0107755004
資料類型 thesis
dc.contributor.advisor 林瑜琤<br>許琇娟zh_TW
dc.contributor.advisor Lin, Yu-Cheng<br>Hsu, Hsiu-Chuanen_US
dc.contributor.author (Authors) 李佳豪zh_TW
dc.contributor.author (Authors) Lee, Jia-Haoen_US
dc.creator (作者) 李佳豪zh_TW
dc.creator (作者) Lee, Jia-Haoen_US
dc.date (日期) 2020en_US
dc.date.accessioned 2-Sep-2020 14:08:38 (UTC+8)-
dc.date.available 2-Sep-2020 14:08:38 (UTC+8)-
dc.date.issued (上傳時間) 2-Sep-2020 14:08:38 (UTC+8)-
dc.identifier (Other Identifiers) G0107755004en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/131977-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用物理研究所zh_TW
dc.description (描述) 107755004zh_TW
dc.description.abstract (摘要) 我們利用雲端 IBM-Q 量子電腦及其搭配的程式套件 Qiskit 來探討量子自旋鏈的基態性質及淬火動力學。我們先在傳統電腦上運用變分量子特徵值解法求得自旋鏈的近似基態波函數,再以量子電腦或 Qiskit 提供的模擬器測量磁化量、量子費雪訊息等觀察量。我們根據所得的結果討論變分法及目前量子電腦在處理量子多體問題上的侷限。zh_TW
dc.description.abstract (摘要) We study ground-state properties and quench dynamics of the quantum Ising chain using IBM’s cloud-based quantum computer and its programming framework Qiskit. The approximate ground states of the spin chain are obtained by means of the Variational Quantum Eigensolver (VQE), implemented on conventional computers. Measurements of several observables, such as magnetization and quantum Fisher information, for the ground states are then carried out on a quantum computer or on a simulator provided by Qiskit. Based on our results, we discuss some limitations of the VQE and its implementation on a quantum computer for solving the quantum many-body problem.en_US
dc.description.tableofcontents 致謝 i
摘要 iii
Abstract v
Contents vii
1 量子計算工具簡介 1
1.1 量子電腦 1
1.2 Qiskit 環境中的量子電路 1
2 問題及方法 9
2.1 量子易辛(Ising)自旋鏈 9
2.2 變分量子特徵值解法 10
2.3 時間演化 13
2.3.1 Trotter 分解法 14
2.3.2 實現時間演化的量子電路 15
3 量子易辛自旋鏈模擬結果 17
3.1 基態的模擬 17
3.2 基態的序參數 21
3.3 量子糾纏性質 26
3.4 淬火的模擬 31
4 結論與展望 37
參考文獻 39
zh_TW
dc.format.extent 10227706 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0107755004en_US
dc.subject (關鍵詞) 量子電路zh_TW
dc.subject (關鍵詞) 量子自旋鏈zh_TW
dc.subject (關鍵詞) 變分量子特徵值解法zh_TW
dc.subject (關鍵詞) 量子糾纏zh_TW
dc.subject (關鍵詞) 量子費雪訊息zh_TW
dc.subject (關鍵詞) IBM-Qen_US
dc.subject (關鍵詞) Qiskiten_US
dc.subject (關鍵詞) Quantum circuiten_US
dc.subject (關鍵詞) Quantum spin chainen_US
dc.subject (關鍵詞) Variational Quantum Eigensolver (VQE)en_US
dc.subject (關鍵詞) Quantum entanglementen_US
dc.subject (關鍵詞) Quantum Fisher informationen_US
dc.title (題名) 以量子電腦模擬量子自旋鏈zh_TW
dc.title (題名) Simulating quantum spin chains on a quantum computeren_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] R. P. Feynman, Int. J. Theor. Phys 21 (1982).
[2] The Q# Programming Language, https://docs.microsoft.com/enus/quantum/.
[3] Cirq, https://cirq.readthedocs.io/en/stable.
[4] Qiskit, https://qiskit.org/.
[5] A. Barenco et al., Physical Review A 52, 3457–3467 (1995).
[6] A. Peruzzo et al., Nature communications 5, 4213 (2014).
[7] G. Nannicini, Physical Review E 99, 013304 (2019).
[8] M. J. Powell, A direct search optimization method that models the objective and constraint functions by linear interpolation, in Advances in Optimization and Numerical Analysis. Mathematics and Its Applications, pages 51–67, 1994.
[9] J. C. Spall, Johns Hopkins apl technical digest 19, 482 (1998).
[10] G. Vidal, Physical Review Letters 93 (2004).
[11] M. Suzuki, Communications in Mathematical Physics 51, 183 (1976).
[12] N. Hatano and M. Suzuki, Lecture Notes in Physics , 37-68 (2005).
[13] E. Gustafson, Y. Meurice, and J. Unmuth-Yockey, Physical Review D 99 (2019).
[14] A. Smith, M. S. Kim, F. Pollmann, and J. Knolle, npj Quantum Information 5 (2019).
[15] A. W. Sandvik, Computational studies of quantum spin systems, in AIP Conference Proceedings, volume 1297, pages 135–338, American Institute of Physics, 2010.
[16] H. F. Song et al., Physical Review B 85 (2012).
[17] P. Hyllus et al., Physical Review A 85 (2012).
[18] G. Tóth, Phys. Rev. A 85, 022322 (2012).
[19] O. Gühne, G. Tóth, and H. J. Briegel, New Journal of Physics 7, 229–229 (2005).
[20] QuTiP: Quantum Toolbox in Python, http://qutip.org/.
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU202001614en_US