Publications-Periodical Articles

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 Sentiment detection in micro-blogs using unsupervised chunk extraction
作者 張瑜芸
Chang, Yu-Yun
Magistry, Pierre
Hsieh, Shu-Kai
貢獻者 語言所
關鍵詞 Sentiment analysis;Emotion lexicon;Unsupervised learning
日期 2016-12
上傳時間 18-Jan-2021 13:21:25 (UTC+8)
摘要 In this paper, we present a proposed system designed for sentiment detection for micro-blog data in Chinese. Our system surprisingly benefits from the lack of word boundary in Chinese writing system and shifts the focus directly to larger and more relevant chunks. We use an unsupervised Chinese word segmentation system and binomial test to extract specific and endogenous lexicon chunks from the training corpus. We combine the lexicon chunks with other external resources to train a maximum entropy model for document classification. With this method, we obtained an averaged F1 score of 87.2 which outperforms the state-of-the-art approach based on the released data in the second SocialNLP shared task.
關聯 Lingua Sinica, Vol.2, No.1, pp.1-10
資料類型 article
DOI https://doi.org/10.1186/s40655-015-0010-8
dc.contributor 語言所
dc.creator (作者) 張瑜芸
dc.creator (作者) Chang, Yu-Yun
dc.creator (作者) Magistry, Pierre
dc.creator (作者) Hsieh, Shu-Kai
dc.date (日期) 2016-12
dc.date.accessioned 18-Jan-2021 13:21:25 (UTC+8)-
dc.date.available 18-Jan-2021 13:21:25 (UTC+8)-
dc.date.issued (上傳時間) 18-Jan-2021 13:21:25 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/133561-
dc.description.abstract (摘要) In this paper, we present a proposed system designed for sentiment detection for micro-blog data in Chinese. Our system surprisingly benefits from the lack of word boundary in Chinese writing system and shifts the focus directly to larger and more relevant chunks. We use an unsupervised Chinese word segmentation system and binomial test to extract specific and endogenous lexicon chunks from the training corpus. We combine the lexicon chunks with other external resources to train a maximum entropy model for document classification. With this method, we obtained an averaged F1 score of 87.2 which outperforms the state-of-the-art approach based on the released data in the second SocialNLP shared task.
dc.format.extent 1137118 bytes-
dc.format.mimetype application/pdf-
dc.relation (關聯) Lingua Sinica, Vol.2, No.1, pp.1-10
dc.subject (關鍵詞) Sentiment analysis;Emotion lexicon;Unsupervised learning
dc.title (題名) Sentiment detection in micro-blogs using unsupervised chunk extraction
dc.type (資料類型) article
dc.identifier.doi (DOI) 10.1186/s40655-015-0010-8
dc.doi.uri (DOI) https://doi.org/10.1186/s40655-015-0010-8