Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 以視覺化系統探索社群媒體中的使用者行為
A Visual Analytics System for Exploring User Behavior in Social Media
作者 李柏彥
Li, Po-Yen
貢獻者 紀明德
Chi, Ming-Te
李柏彥
Li, Po-Yen
關鍵詞 視覺化
社群媒體
使用者
行為
探索
系統
Visual
Analytic
System
Social media
User
Behavior
日期 2021
上傳時間 2-Mar-2021 14:32:33 (UTC+8)
摘要 社群媒體是現代社會中獲取資訊的主要管道之一,同時也是人們發表意見的地方,然而,人們的意見經常被社群媒體上的意見領袖所左右,而意見領袖的聲量通常透過發表文章及評論來累積,但也有可能是特定集團抬轎而來,因此,本研究提出一個視覺化分析系統,將使用者之間的行為相似度表示成距離矩陣並排序,再以基於熱度圖的視覺化呈現,並且利用使用者與文章的二分關係將其繪製成具關聯矩陣風格的視覺化,結合上述兩者視覺化來觀察使用者活動情形並比較不同使用者類型的差異,可以幫助人們了解意見領袖的聲量是如何累積,以及他們是如何讓其關注的議題被更多人看見,最後,我們會做使用者研究來評估本論文的成效。
Social media is one of the main channels for obtaining information in modern society, and it is also a place where people can express their opinions. However, people`s views are often influenced by opinion leaders on social media. The influence of opinion leaders is usually accumulated by publishing articles and comments, but it may also be carried by specific groups. Therefore, this research proposes a visual analysis system, which expresses the behavior similarity between users as a sorted distance matrix, and then visualizes them based on an ordered heatmap. We also use bipartite relations between users and articles to draw it into visualization with an adjacency matrix style. By combining the above two visualizations, we can observe users` activities and compare the differences between different types of users. The system can help people understand how to accumulate the influence of the opinion leader and how they make their concerns more visible.
參考文獻 [1] J. Heer, & D. Boyd. Vizster: visualizing online social networks, IEEE Symposium on Information Visualization (INFOVIS 2005), 2005.
[2] Nan Cao, Yu-Ru Lin, Fan Du, & Dashun Wang. Episogram: Visual Summarization of Egocentric Social Interactions. IEEE Computer Graphics and Applications 36.5: 72-81, 2016.
[3] Mengdie Hu, Krist Wongsuphasawat, & John Stasko. Visualizing Social Media Content with SentenTree. IEEE Transactions on Visualization and Computer Graphics, 23.1, 2017.
[4] P. Xu, Y. Wu, E. Wei, T.-Q. Peng, S. Liu, J. J. H. Zhu, & H. Qu. Visual analysis of topic competition on social media. IEEE Transactions on Visualization and Computer Graphics, 19.12:2012–2021, 2013.
[5] F. Viégas, M. Wattenberg, & J. Hebert. Google+Ripples: a native visualization of information flow. WWW `13: Proceedings of the 22nd international conference on World Wide Web, pages 1389-1398, 2013.
[6] S. Chen, S. Chen, Z. Wang, J. Liang, X. Yuan, N. Cao, & Y. Wu. D-Map: Visual Analysis of Ego-centric Information Diffusion Patterns in Social Media. 2016 IEEE Conference on Visual Analytics Science and Technology (VAST), 2016.
[7] M. Sun, P. Mi, C. North, & N. Ramakrishnan. Biset: Semantic edge bundling with biclusters for sensemaking. IEEE transactions on visualization and computer graphics, 22(1):310–319, 2016.
[8] G. Y.-Y. Chan, P. Xu, Z. Dai, & L. Ren. Vibr: Visualizing bipartite relations at scale with the minimum description length principle. IEEE TVCG, 25(1):321–330, 2019.
[9] M. Bostock, V. Ogievetsky, & J. Heer. D3 data-driven documents, IEEE transactions on visualization and computer graphics, 17.12: 2301-2309, 2011.
[10] ptt-web-crawler is a crawler for the web version of ptt @ONLINE. [Online]. Available: https://github.com/jwlin/ptt-web-crawler.
[11] S. Tilkov & S. Vinoski, "Node. js: Using JavaScript to build high-performance network programs," IEEE Internet Computing, vol. 14, no. 6, pp. 80-83, 2010.
[12] Maoran Zhu, Xingkai Lin, Ting Lu, & Hongwei Wang. Identification of Opinion Leaders in Social Networks Based on Sentiment Analysis: Evidence from an Automotive Forum. International Conference on Modeling, Simulation and Optimization Technologies and Applications (MSOTA2016).
[13] M. Behrisch, B. Bach, N. Henry Riche, T. Schreck, & J.-D. Fekete. Matrix reordering methods for table and network visualization. Computer Graphics Forum, 35(3):693–716, 2016.
[14] FEKETE J.-D.. Reorder.js: A JavaScript Library to Reorder Tables and Networks. IEEE VIS 2015, Oct. 2015. Poster.
[15] V.D. Blondel, J.-L. Guillaume, & R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large networks. J. of Statistical Mechanics, page P10008, 2008.
[16] M. Newman. Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23):8577–8582, 2006.
描述 碩士
國立政治大學
資訊科學系
107753033
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0107753033
資料類型 thesis
dc.contributor.advisor 紀明德zh_TW
dc.contributor.advisor Chi, Ming-Teen_US
dc.contributor.author (Authors) 李柏彥zh_TW
dc.contributor.author (Authors) Li, Po-Yenen_US
dc.creator (作者) 李柏彥zh_TW
dc.creator (作者) Li, Po-Yenen_US
dc.date (日期) 2021en_US
dc.date.accessioned 2-Mar-2021 14:32:33 (UTC+8)-
dc.date.available 2-Mar-2021 14:32:33 (UTC+8)-
dc.date.issued (上傳時間) 2-Mar-2021 14:32:33 (UTC+8)-
dc.identifier (Other Identifiers) G0107753033en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/134086-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學系zh_TW
dc.description (描述) 107753033zh_TW
dc.description.abstract (摘要) 社群媒體是現代社會中獲取資訊的主要管道之一,同時也是人們發表意見的地方,然而,人們的意見經常被社群媒體上的意見領袖所左右,而意見領袖的聲量通常透過發表文章及評論來累積,但也有可能是特定集團抬轎而來,因此,本研究提出一個視覺化分析系統,將使用者之間的行為相似度表示成距離矩陣並排序,再以基於熱度圖的視覺化呈現,並且利用使用者與文章的二分關係將其繪製成具關聯矩陣風格的視覺化,結合上述兩者視覺化來觀察使用者活動情形並比較不同使用者類型的差異,可以幫助人們了解意見領袖的聲量是如何累積,以及他們是如何讓其關注的議題被更多人看見,最後,我們會做使用者研究來評估本論文的成效。zh_TW
dc.description.abstract (摘要) Social media is one of the main channels for obtaining information in modern society, and it is also a place where people can express their opinions. However, people`s views are often influenced by opinion leaders on social media. The influence of opinion leaders is usually accumulated by publishing articles and comments, but it may also be carried by specific groups. Therefore, this research proposes a visual analysis system, which expresses the behavior similarity between users as a sorted distance matrix, and then visualizes them based on an ordered heatmap. We also use bipartite relations between users and articles to draw it into visualization with an adjacency matrix style. By combining the above two visualizations, we can observe users` activities and compare the differences between different types of users. The system can help people understand how to accumulate the influence of the opinion leader and how they make their concerns more visible.en_US
dc.description.tableofcontents 第一章 緒論 1
1.1 研究動機與目的 1
1.2 問題描述 2
1.3 論文貢獻 2
第二章 相關研究 3
2.1 社群網路視覺化 3
2.2 文本資料視覺化 5
2.3 資訊傳播視覺化 6
2.4 二分圖視覺化 7
第三章 設計需求 9
第四章 研究方法與步驟 10
4.1 資料撈取和前處理 11
4.2 影響力計算 13
4.3 社群偵測 14
4.4 距離矩陣(distance matrix)與排序 16
4.5 視覺化設計 18
第五章 實驗結果與討論 31
5.1 使用案例 31
5.1.1 觀察使用者的抬轎行為 31
5.1.2 觀察使用者行為的改變 38
5.2 使用者研究 42
第六章 結論與未來發展 45
參考文獻 47
zh_TW
dc.format.extent 6416937 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0107753033en_US
dc.subject (關鍵詞) 視覺化zh_TW
dc.subject (關鍵詞) 社群媒體zh_TW
dc.subject (關鍵詞) 使用者zh_TW
dc.subject (關鍵詞) 行為zh_TW
dc.subject (關鍵詞) 探索zh_TW
dc.subject (關鍵詞) 系統zh_TW
dc.subject (關鍵詞) Visualen_US
dc.subject (關鍵詞) Analyticen_US
dc.subject (關鍵詞) Systemen_US
dc.subject (關鍵詞) Social mediaen_US
dc.subject (關鍵詞) Useren_US
dc.subject (關鍵詞) Behavioren_US
dc.title (題名) 以視覺化系統探索社群媒體中的使用者行為zh_TW
dc.title (題名) A Visual Analytics System for Exploring User Behavior in Social Mediaen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] J. Heer, & D. Boyd. Vizster: visualizing online social networks, IEEE Symposium on Information Visualization (INFOVIS 2005), 2005.
[2] Nan Cao, Yu-Ru Lin, Fan Du, & Dashun Wang. Episogram: Visual Summarization of Egocentric Social Interactions. IEEE Computer Graphics and Applications 36.5: 72-81, 2016.
[3] Mengdie Hu, Krist Wongsuphasawat, & John Stasko. Visualizing Social Media Content with SentenTree. IEEE Transactions on Visualization and Computer Graphics, 23.1, 2017.
[4] P. Xu, Y. Wu, E. Wei, T.-Q. Peng, S. Liu, J. J. H. Zhu, & H. Qu. Visual analysis of topic competition on social media. IEEE Transactions on Visualization and Computer Graphics, 19.12:2012–2021, 2013.
[5] F. Viégas, M. Wattenberg, & J. Hebert. Google+Ripples: a native visualization of information flow. WWW `13: Proceedings of the 22nd international conference on World Wide Web, pages 1389-1398, 2013.
[6] S. Chen, S. Chen, Z. Wang, J. Liang, X. Yuan, N. Cao, & Y. Wu. D-Map: Visual Analysis of Ego-centric Information Diffusion Patterns in Social Media. 2016 IEEE Conference on Visual Analytics Science and Technology (VAST), 2016.
[7] M. Sun, P. Mi, C. North, & N. Ramakrishnan. Biset: Semantic edge bundling with biclusters for sensemaking. IEEE transactions on visualization and computer graphics, 22(1):310–319, 2016.
[8] G. Y.-Y. Chan, P. Xu, Z. Dai, & L. Ren. Vibr: Visualizing bipartite relations at scale with the minimum description length principle. IEEE TVCG, 25(1):321–330, 2019.
[9] M. Bostock, V. Ogievetsky, & J. Heer. D3 data-driven documents, IEEE transactions on visualization and computer graphics, 17.12: 2301-2309, 2011.
[10] ptt-web-crawler is a crawler for the web version of ptt @ONLINE. [Online]. Available: https://github.com/jwlin/ptt-web-crawler.
[11] S. Tilkov & S. Vinoski, "Node. js: Using JavaScript to build high-performance network programs," IEEE Internet Computing, vol. 14, no. 6, pp. 80-83, 2010.
[12] Maoran Zhu, Xingkai Lin, Ting Lu, & Hongwei Wang. Identification of Opinion Leaders in Social Networks Based on Sentiment Analysis: Evidence from an Automotive Forum. International Conference on Modeling, Simulation and Optimization Technologies and Applications (MSOTA2016).
[13] M. Behrisch, B. Bach, N. Henry Riche, T. Schreck, & J.-D. Fekete. Matrix reordering methods for table and network visualization. Computer Graphics Forum, 35(3):693–716, 2016.
[14] FEKETE J.-D.. Reorder.js: A JavaScript Library to Reorder Tables and Networks. IEEE VIS 2015, Oct. 2015. Poster.
[15] V.D. Blondel, J.-L. Guillaume, & R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large networks. J. of Statistical Mechanics, page P10008, 2008.
[16] M. Newman. Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23):8577–8582, 2006.
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU202100352en_US