學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

題名 多元製程之共變數矩陣追蹤研究
The study of Multivariate Process Dispersion Control Chart
作者 劉宴伶
Liu, Yen-Ling
貢獻者 楊素芬
劉宴伶
Liu, Yen-Ling
關鍵詞 多元統計過程控制
共變異數矩陣
資料深度
無分佈假設
指數加權移動平均
變動維度
Multivariate statistical process control
Covariance matrix
Data depth
Distribution-free
Exponentially weighted moving average
Variable dimension
日期 2021
上傳時間 4-Aug-2021 14:41:33 (UTC+8)
摘要 近年來,在工業製造過程中同時監控兩個上的相關品質變數非常重要,因此多元統計過程控制 (MSPC) 成為研究人員的熱門研究領域。由於許多數據資料不服從多元常態分佈,因此無分配假設的管制圖更是一個相當重要的工具來監控產品品質。
本文建構了兩種新的指數加權移動平均 (EWMA) 管制圖。一種是基於Hotelling T^2二次式來監控資料服從多元常態分佈的共變異數矩陣。另一個則是結合資料深度 (data depth) 和符號方法 (sign method) 的無分佈假設的管制圖來監控過程的分散程度。此外,我們添加了變動維度 (VD) 技巧來建構新的變動維度的管制圖,用於監控過程具有 s_2 個變量的共變異數矩陣。在 s_2 個變量中,其中一些衡量容易或只需要較少的測量成本,而其餘的變量衡量困難或需要昂貴的測量成本。
當共變異矩陣的變異數有變化時,所提出的管制圖比文獻中現有的管制圖表現更好。此外,我們通過使用半導體數據說明了所提出的管制圖的應用。因此,我們建議採用提出的管制圖來檢測過程分散的變化。
Today it is important to monitor more than two correlated quality variables at the same time in the industrial manufacturing process, so the multivariate statistical process control (MSPC) becomes a popular research area for the researchers. Since many data do not follow a multivariate normal distribution, the study of distribution-free control chart is very important.
This paper constructs two kinds of new exponentially weighted moving average (EWMA) control charts. One is based on the Hotelling T^2 quadratic form to monitor the covariance matrix for a process following a multivariate normal distribution. Another is a distribution-free control chart based on the data depth and the sign method to monitor process dispersion. In addition, we add the technique of variable dimension (VD) to build new VD-type control charts for monitoring covariance matrix of a process with s_2 variables. Some of them are easy or need less cost to measure and the remaining variables are difficult or need expensive cost to measure.
The proposed control charts performs better than the existing control charts in literature when the covariance matrix has changes in variances. Furthermore, we illustrate the application of the proposed control charts by using the semiconductor data. Hence, we suggest adopting the proposed control charts to detect the shifts in process dispersion.
參考文獻 [1] Alt, F. B. (1985). Multivariate quality control. The Encyclopedia of Statistical Sciences, 110-122.
[2] Aparisi, F., Epprecht, E. K., & Ruiz, O. (2012). T2 control chart with variable dimension. Journal of Quality Technology, 44(4), 375-393.
[3] Bell, R. C., Jones-Farmer, L. A., & Billor, N. (2014). A distribution-free multivariate phase I location control chart for subgrouped data from elliptical distributions. Technometrics, 56(4), 528-538.
[4] Chaven, A. R., & Shirke, D. T. (2020). Nonparametric two sample tests for scale parameters of multivariate distributions. Communications for Statistical Applications and Methods, 27(4), 397-412.
[5] Chen, N., Zi, X., & Zou, C. (2016). A distribution-free multivariate control chart. Technometrics, 58(4), 448-459.
[6] Crosier, R. B. (1988). Multivariate generalizations of cumulative sum quality-control schemes. Technometrics, 30(3), 291-303.
[7] Epprecht, E. K., Aparisi, F., & Ruiz, O. (2018). Optimum variable-dimension EWMA chart for multivariate statistical process control. Quality Engineering, 30(2), 268-282.
[8] Epprecht, E. K., Aparisi, F., Ruiz, O., & Veiga, A. (2013). Reducing sampling costs in multivariate SPC with a double-dimension T2 control chart. International Journal of Production Economics, 144(1), 90-104.
[9] Farokhnia, M., & Niaki, S. T. A. (2019). Principal component analysis-based control charts using support vector machines for multivariate non-normal distributions. Communications in Statistics-Simulation and Computation, 1-24.
[10] Hawkins, D. M. (1991). Multivariate quality control based on regression-adjusted variables. Technometrics, 33(1), 61-75.
[11] Hawkins, D. M., & Maboudou-Tchao, E. M. (2008). Multivariate exponentially weighted moving covariance matrix. Technometrics, 50, 155-166.
[12] Hotelling, H. A. R. O. L. D. (1947). Multivariate quality control. Techniques of statistical analysis. McGraw-Hill, New York.
[13] Huwang, L., Lin, L. W., & Yu, C. T. (2019). A spatial rank-based multivariate EWMA chart for monitoring process shape matrices. Quality and Reliability Engineering International, 1-19.
[14] Huwang, L., Lin, P. C., Chang, C. H., Lin, L. W., & Tee, Y. S. (2017). An EWMA chart for monitoring the covariance matrix of a multivariate process based on dissimilarity index. Quality and Reliability Engineering International, 33, 2089-2104.
[15] Huwang, L., Yeh, A. B., & Wu, C. V. (2007). Monitoring multivariate process variability for individual observations. Journal of Quality Technology, 39, 258-278.
[16] Kim, J., Abdella, G. M., Kim, S., Al-Khalifa, K. N., & Hamouda, A. M. (2019). Control charts for variability monitoring in high-dimensional processes. Computers & Industrial Engineering, 130, 309-316.
[17] Li, B., Wang, K., & Yeh, A. B. (2013). Monitoring the covariance matrix via penalized likelihood estimation. IIE Transactions, 45, 132-146.
[18] Li, Z., Zou, C., Wang, Z. and Huwang, L. (2013). A multivariate sign chart for monitoring process shape parameters. Journal of Quality Technology, 45(2), 149-165.
[19] Liang, W., Xiang, D., Pu, X., Li, Y., & Jin, L. (2019). A robust multivariate sign control chart for detecting shifts in covariance matrix under the elliptical directions distributions, Quality Technology & Quantitative Management, 16(1), 113-127.
[20] Liu, R. Y. (1995). Control charts for multivariate processes. Journal of the American Statistical Association, 90(432), 1380-1387.
[21] Lowry, C. A., & Montgomery, D. C. (1995). A review of multivariate control charts. HE transactions, 27(6), 800-810.
[22] Luca Scrucca. (2021). Package ‘GA’. Retrieved June 9, 2021, from https://cran.r-project.org/web/packages/GA/GA.pdf
[23] MacGregor, J. F., & Kourti, T. (1995). Statistical process control of multivariate processes. Control Engineering Practice, 3(3), 403-414.
[24] McCann M., & Johnston A. (2008). SECOM Data Set Center for Machine Learning and Intelligent Systems. Irvine, CA: University of California. Retrieved June 9, 2021, from https://archive.ics.uci.edu/ml/datasets.php
[25] Melo, M. S., Ho, L. L., & Medeiros, P. G. (2017). M a x D: an attribute control chart to monitor a bivariate process mean. The International Journal of advanced Manufacturing Technology. 90, 489-498.
[26] Montgomery, D. C., & Wadsworth, H. M. (1972, May). Some techniques for multivariate quality control applications. In ASQC Technical Conference Transactions, Washington, D. C (pp. 427-435).
[27] Qiu, P. (2008). Distribution-free multivariate process control based on log-linear modeling. IIE Transactions, 40(7), 664-677.
[28] Reynold, M. R., Jr., Amin, R. W., Arnold, J. C., & Nachlas, J. A. (1988). X ̅ charts with variable sampling intervals. Technometrics, 30(2), 181-192.
[29] Roberts, S. W. (1959). Control chart tests based on geometric moving averages. Technometrics, 1(3), 239-250.
[30] Wang, S. & Reynolds, M. R. (2013). A GLR Control Chart for Monitoring the Mean Vector of a Multivariate Normal Process. Journal of Quality Technology, 45(1), 18-33.
[31] Shen, X., Tsung, F., & Zou, C. (2014). A new multivariate EWMA scheme for monitoring covariance matrices. International Journal of Production Research, 52, 2834-2850.
[32] Shewhart, W. A. (1924). Some applications of statistical methods to the analysis of physical and engineering data. Bell System Technical Journal, 3(1), 43-87.
[33] Yang, S. F., Lin, Y. C., & Yeh, A. B. (2021). A phase Ⅱ depth-based variable dimension EWMA control chart for monitoring process mean. Quality and Reliability Engineering International, 1-15.
[34] Yeh, A. B., Huwang, L., & Wu, Y. F. (2004). A likelihood-ratio-based EWMA control chart for monitoring variability of multivariate normal processes. IIE Transactions, 36(9), 865-879.
[35] Yeh, A. B., Li, B., & Wang, K. (2012). Monitoring multivariate process variability with individual observations via penalized likelihood estimation. International Journal of Production Research, 50, 6624-6638.
[36] Yen, C. L., & Shiau, J. J. H. (2010). A multivariate control chart for detecting increases in process dispersion. Statistica Sinica, 20, 1683-1707.
[37] Zou, C., & Tsung, F. (2011). A multivariate sign EWMA control chart. Technometrics, 53(1), 84-97.
描述 碩士
國立政治大學
統計學系
108354010
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0108354010
資料類型 thesis
dc.contributor.advisor 楊素芬zh_TW
dc.contributor.author (Authors) 劉宴伶zh_TW
dc.contributor.author (Authors) Liu, Yen-Lingen_US
dc.creator (作者) 劉宴伶zh_TW
dc.creator (作者) Liu, Yen-Lingen_US
dc.date (日期) 2021en_US
dc.date.accessioned 4-Aug-2021 14:41:33 (UTC+8)-
dc.date.available 4-Aug-2021 14:41:33 (UTC+8)-
dc.date.issued (上傳時間) 4-Aug-2021 14:41:33 (UTC+8)-
dc.identifier (Other Identifiers) G0108354010en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/136316-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計學系zh_TW
dc.description (描述) 108354010zh_TW
dc.description.abstract (摘要) 近年來,在工業製造過程中同時監控兩個上的相關品質變數非常重要,因此多元統計過程控制 (MSPC) 成為研究人員的熱門研究領域。由於許多數據資料不服從多元常態分佈,因此無分配假設的管制圖更是一個相當重要的工具來監控產品品質。
本文建構了兩種新的指數加權移動平均 (EWMA) 管制圖。一種是基於Hotelling T^2二次式來監控資料服從多元常態分佈的共變異數矩陣。另一個則是結合資料深度 (data depth) 和符號方法 (sign method) 的無分佈假設的管制圖來監控過程的分散程度。此外,我們添加了變動維度 (VD) 技巧來建構新的變動維度的管制圖,用於監控過程具有 s_2 個變量的共變異數矩陣。在 s_2 個變量中,其中一些衡量容易或只需要較少的測量成本,而其餘的變量衡量困難或需要昂貴的測量成本。
當共變異矩陣的變異數有變化時,所提出的管制圖比文獻中現有的管制圖表現更好。此外,我們通過使用半導體數據說明了所提出的管制圖的應用。因此,我們建議採用提出的管制圖來檢測過程分散的變化。
zh_TW
dc.description.abstract (摘要) Today it is important to monitor more than two correlated quality variables at the same time in the industrial manufacturing process, so the multivariate statistical process control (MSPC) becomes a popular research area for the researchers. Since many data do not follow a multivariate normal distribution, the study of distribution-free control chart is very important.
This paper constructs two kinds of new exponentially weighted moving average (EWMA) control charts. One is based on the Hotelling T^2 quadratic form to monitor the covariance matrix for a process following a multivariate normal distribution. Another is a distribution-free control chart based on the data depth and the sign method to monitor process dispersion. In addition, we add the technique of variable dimension (VD) to build new VD-type control charts for monitoring covariance matrix of a process with s_2 variables. Some of them are easy or need less cost to measure and the remaining variables are difficult or need expensive cost to measure.
The proposed control charts performs better than the existing control charts in literature when the covariance matrix has changes in variances. Furthermore, we illustrate the application of the proposed control charts by using the semiconductor data. Hence, we suggest adopting the proposed control charts to detect the shifts in process dispersion.
en_US
dc.description.tableofcontents Chapter 1. Introduction 1
1.1 Literature Review 1
1.2 Study Motivation 3
1.3 Research Method 3
Chapter 2. Using A New EWMA Chart to Monitor Process Dispersion under A Multivariate Normal Distribution 4
2.1 Design of the new EWMA chart 4
2.1.1 The one-sided ZEWMAC chart to monitor the upward process dispersion 5
2.1.2 The two-sided ZEWMAC chart to monitor the upward or downward process dispersion 6
2.1.3 The one-sided ZEWMAC chart to monitor the downward process dispersion 7
2.2 The detection performance of the proposed ZEWMAC chart for an in-control process with identity covariance matrix 18
2.3 The detection performance of the proposed ZEWMAC chart for an in-control process with non-identity covariance matrix 25
2.4 Performance comparison of the proposed ZEWMAC chart and existing control charts for an in-control process with identity covariance matrix 32
2.4.1 Performance comparison between the ZEWMAC chart and one-sided LRT chart 32
2.4.2 Performance comparison among the ZEWMAC, HMT, MaxNorm, and MEWMC-based PLR charts 34
2.4.3 Performance comparison between the ZEWMAC and RPLR charts 38
2.5 A numerical example of using the ZEWMAC chart 42
Chapter 3. Using the Variable Dimension ZEWMAC Chart to Monitor Process Dispersion under a Multivariate Normal Distribution 50
3.1 Design the variable dimension ZEWMAC chart 50
3.1.1 The one-sided VD ZEWMAC chart to monitor the upward process dispersion 51
3.1.2 The one-sided VD ZEWMAC chart to monitor the downward process dispersion 54
3.2 The detection performance of the proposed VD ZEWMAC chart for an in-control process with identity covariance matrix 64
3.3 The detection performance of the proposed VD ZEWMAC chart for an in-control process with non-identity covariance matrix 69
3.4 Performance comparison of the VD ZEWMAC chart and ZEWMAC chart 73
3.5 The cost of sampling and detection performance of the VD ZEWMAC chart 77
3.6 A numerical example of using the VD ZEWMAC chart 81
Chapter 4. A New Data-depth based EWMA Dispersion Chart for an Unknown Distributed Multivariate Process Data 92
4.1 Design of the new EWMA chart 92
4.1.1 The one-sided ZEWMAD chart to monitor the upward process dispersion 94
4.1.2 The one-sided ZEWMAD chart to monitor the downward process dispersion 95
4.2 The detection performance of the proposed ZEWMAD chart for an in-control process with identity covariance matrix 98
4.3 The detection performance of the proposed ZEWMAD chart for an in-control process with non-identity covariance matrix 107
4.4 Performance comparison of the proposed one-sided ZEWMAD chart and existing control charts 110
4.4.1 Performance comparison among the ZEWMAD, SMaxNorm, and MaxNorm charts 110
4.4.2 Performance comparison between the ZEWMAD and MSRE charts 114
4.5 A numerical example of using the ZEWMAD chart 118
Chapter 5. Using the Variable Dimension ZEWMAD Chart to Monitor the Process Dispersion for A Process with An Unknown Distribution 122
5.1 Design the variable dimension ZEWMAD chart 122
5.1.1 The one-sided VD ZEWMAD chart to monitor the upward process dispersion 124
5.1.2 The one-sided VD ZEWMAD chart to monitor the downward process dispersion 126
5.2 The detection performance of the proposed VD ZEWMAD chart and performance comparison of the VD and FD ZEWMAD charts for an in-control process with identity covariance matrix 131
5.3 The detection performance of the proposed VD ZEWMAD chart for an in-control process with non-identity covariance matrix 144
5.4 The cost of sampling and detection performance of the VD ZEWMAD chart 149
5.5 A numerical example of using the VD ZEWMAD chart 152
Chapter 6. Summary and Future Study 160
References 161
zh_TW
dc.format.extent 8669065 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0108354010en_US
dc.subject (關鍵詞) 多元統計過程控制zh_TW
dc.subject (關鍵詞) 共變異數矩陣zh_TW
dc.subject (關鍵詞) 資料深度zh_TW
dc.subject (關鍵詞) 無分佈假設zh_TW
dc.subject (關鍵詞) 指數加權移動平均zh_TW
dc.subject (關鍵詞) 變動維度zh_TW
dc.subject (關鍵詞) Multivariate statistical process controlen_US
dc.subject (關鍵詞) Covariance matrixen_US
dc.subject (關鍵詞) Data depthen_US
dc.subject (關鍵詞) Distribution-freeen_US
dc.subject (關鍵詞) Exponentially weighted moving averageen_US
dc.subject (關鍵詞) Variable dimensionen_US
dc.title (題名) 多元製程之共變數矩陣追蹤研究zh_TW
dc.title (題名) The study of Multivariate Process Dispersion Control Charten_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] Alt, F. B. (1985). Multivariate quality control. The Encyclopedia of Statistical Sciences, 110-122.
[2] Aparisi, F., Epprecht, E. K., & Ruiz, O. (2012). T2 control chart with variable dimension. Journal of Quality Technology, 44(4), 375-393.
[3] Bell, R. C., Jones-Farmer, L. A., & Billor, N. (2014). A distribution-free multivariate phase I location control chart for subgrouped data from elliptical distributions. Technometrics, 56(4), 528-538.
[4] Chaven, A. R., & Shirke, D. T. (2020). Nonparametric two sample tests for scale parameters of multivariate distributions. Communications for Statistical Applications and Methods, 27(4), 397-412.
[5] Chen, N., Zi, X., & Zou, C. (2016). A distribution-free multivariate control chart. Technometrics, 58(4), 448-459.
[6] Crosier, R. B. (1988). Multivariate generalizations of cumulative sum quality-control schemes. Technometrics, 30(3), 291-303.
[7] Epprecht, E. K., Aparisi, F., & Ruiz, O. (2018). Optimum variable-dimension EWMA chart for multivariate statistical process control. Quality Engineering, 30(2), 268-282.
[8] Epprecht, E. K., Aparisi, F., Ruiz, O., & Veiga, A. (2013). Reducing sampling costs in multivariate SPC with a double-dimension T2 control chart. International Journal of Production Economics, 144(1), 90-104.
[9] Farokhnia, M., & Niaki, S. T. A. (2019). Principal component analysis-based control charts using support vector machines for multivariate non-normal distributions. Communications in Statistics-Simulation and Computation, 1-24.
[10] Hawkins, D. M. (1991). Multivariate quality control based on regression-adjusted variables. Technometrics, 33(1), 61-75.
[11] Hawkins, D. M., & Maboudou-Tchao, E. M. (2008). Multivariate exponentially weighted moving covariance matrix. Technometrics, 50, 155-166.
[12] Hotelling, H. A. R. O. L. D. (1947). Multivariate quality control. Techniques of statistical analysis. McGraw-Hill, New York.
[13] Huwang, L., Lin, L. W., & Yu, C. T. (2019). A spatial rank-based multivariate EWMA chart for monitoring process shape matrices. Quality and Reliability Engineering International, 1-19.
[14] Huwang, L., Lin, P. C., Chang, C. H., Lin, L. W., & Tee, Y. S. (2017). An EWMA chart for monitoring the covariance matrix of a multivariate process based on dissimilarity index. Quality and Reliability Engineering International, 33, 2089-2104.
[15] Huwang, L., Yeh, A. B., & Wu, C. V. (2007). Monitoring multivariate process variability for individual observations. Journal of Quality Technology, 39, 258-278.
[16] Kim, J., Abdella, G. M., Kim, S., Al-Khalifa, K. N., & Hamouda, A. M. (2019). Control charts for variability monitoring in high-dimensional processes. Computers & Industrial Engineering, 130, 309-316.
[17] Li, B., Wang, K., & Yeh, A. B. (2013). Monitoring the covariance matrix via penalized likelihood estimation. IIE Transactions, 45, 132-146.
[18] Li, Z., Zou, C., Wang, Z. and Huwang, L. (2013). A multivariate sign chart for monitoring process shape parameters. Journal of Quality Technology, 45(2), 149-165.
[19] Liang, W., Xiang, D., Pu, X., Li, Y., & Jin, L. (2019). A robust multivariate sign control chart for detecting shifts in covariance matrix under the elliptical directions distributions, Quality Technology & Quantitative Management, 16(1), 113-127.
[20] Liu, R. Y. (1995). Control charts for multivariate processes. Journal of the American Statistical Association, 90(432), 1380-1387.
[21] Lowry, C. A., & Montgomery, D. C. (1995). A review of multivariate control charts. HE transactions, 27(6), 800-810.
[22] Luca Scrucca. (2021). Package ‘GA’. Retrieved June 9, 2021, from https://cran.r-project.org/web/packages/GA/GA.pdf
[23] MacGregor, J. F., & Kourti, T. (1995). Statistical process control of multivariate processes. Control Engineering Practice, 3(3), 403-414.
[24] McCann M., & Johnston A. (2008). SECOM Data Set Center for Machine Learning and Intelligent Systems. Irvine, CA: University of California. Retrieved June 9, 2021, from https://archive.ics.uci.edu/ml/datasets.php
[25] Melo, M. S., Ho, L. L., & Medeiros, P. G. (2017). M a x D: an attribute control chart to monitor a bivariate process mean. The International Journal of advanced Manufacturing Technology. 90, 489-498.
[26] Montgomery, D. C., & Wadsworth, H. M. (1972, May). Some techniques for multivariate quality control applications. In ASQC Technical Conference Transactions, Washington, D. C (pp. 427-435).
[27] Qiu, P. (2008). Distribution-free multivariate process control based on log-linear modeling. IIE Transactions, 40(7), 664-677.
[28] Reynold, M. R., Jr., Amin, R. W., Arnold, J. C., & Nachlas, J. A. (1988). X ̅ charts with variable sampling intervals. Technometrics, 30(2), 181-192.
[29] Roberts, S. W. (1959). Control chart tests based on geometric moving averages. Technometrics, 1(3), 239-250.
[30] Wang, S. & Reynolds, M. R. (2013). A GLR Control Chart for Monitoring the Mean Vector of a Multivariate Normal Process. Journal of Quality Technology, 45(1), 18-33.
[31] Shen, X., Tsung, F., & Zou, C. (2014). A new multivariate EWMA scheme for monitoring covariance matrices. International Journal of Production Research, 52, 2834-2850.
[32] Shewhart, W. A. (1924). Some applications of statistical methods to the analysis of physical and engineering data. Bell System Technical Journal, 3(1), 43-87.
[33] Yang, S. F., Lin, Y. C., & Yeh, A. B. (2021). A phase Ⅱ depth-based variable dimension EWMA control chart for monitoring process mean. Quality and Reliability Engineering International, 1-15.
[34] Yeh, A. B., Huwang, L., & Wu, Y. F. (2004). A likelihood-ratio-based EWMA control chart for monitoring variability of multivariate normal processes. IIE Transactions, 36(9), 865-879.
[35] Yeh, A. B., Li, B., & Wang, K. (2012). Monitoring multivariate process variability with individual observations via penalized likelihood estimation. International Journal of Production Research, 50, 6624-6638.
[36] Yen, C. L., & Shiau, J. J. H. (2010). A multivariate control chart for detecting increases in process dispersion. Statistica Sinica, 20, 1683-1707.
[37] Zou, C., & Tsung, F. (2011). A multivariate sign EWMA control chart. Technometrics, 53(1), 84-97.
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU202100926en_US