Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 具主題式文本摘要萃取之線上討論工具發展與應用研究
A Topic Modeling Scheme with Abstract Extraction to Facilitate Asynchronous Online Discussion Performance
作者 陳冠霖
Chen, Kuan-Lin
貢獻者 陳志銘
Chen, Chih-Ming
陳冠霖
Chen, Kuan-Lin
關鍵詞 線上討論
隱含狄利克雷分布主題模型
BM25
自動摘要
社會性科學議題
學習行為歷程
科技接受度
Online Discussion
Latent Dirichlet Allocation
BM25
Automatic Summarization
Socio-Scientific Issues
Learning Behavior
Technology Acceptance Model
日期 2021
上傳時間 2-Sep-2021 16:35:28 (UTC+8)
摘要 為了解決線上討論中學習者常常需要耗費大量時間對討論內容進行理解,以及討論內容經處理分析後常出現資訊過於抽象、解釋性不足,因而導致影響學習者討論學習成效的問題,本研究採用文本探勘技術中的LDA (Latent Dirichlet Allocation)主題分析模型及摘要抽取技術,發展具摘要萃取之主題分析即時回饋系統(Topic Analysis Instant Feedback System with Abstract Extraction, TAIFS-AE),改善Chen, Li, Chang 與 Chen (2021)所提出的主題分析即時回饋系統(Topic Analysis Instant Feedback System, TAIFS),以降低TAIFS 採用LDA主題分析模型,並以幾個關鍵字代表所分析主題,仍難以讓學習者清楚解讀主題意涵的問題,以幫助學習者能更精確掌握整體討論的概要,以及議題討論的面向。
本實驗採真實驗研究法,透過網路招募各大專院校學生共29人為研究對象,將其中14位學生隨機分派為使用TAIFS-AE(提供主題摘要列表)輔以線上討論的實驗組,另外15位學生則分派為使用TAIFS(提供主題關鍵字)的控制組,進行「新冠肺炎防疫應變」之社會性科學議題(Socio-Scientific Issues, SSI)線上討論。以探討兩組學習者在討論學習成效與科技接受度上是否具有顯著的差異,並且以先備知識作為背景變項,探討不同先備知識之學習者,在學習成效與科技接受度上是否具有顯著差異。此外,也透過滯後序列分析(Lag Sequential Analysis,LSA)探討實驗組學習者之有效行為模式。
研究結果發現,使用TAIFS-AE與使用TAIFS的學習者在討論學習成效上沒有顯著的差異,而兩組學習者在科技接受度上亦無顯著的差異,但是兩組學習者的科技接受度均高於中位數,顯示其科技接受度良好。本研究進一步透過行為歷程分析的結果發現,採用TAIFS-AE學習者在摘要句點擊次數與整體學習成效以及多元觀點之分數具有顯著正相關。此外,在使用TAIFS-AE輔助線上討論的組別中,點擊摘要列表功能次數較多的學習者在討論學習成效中的總分及多元觀點面向上顯著優於較少點擊摘要列表功能的學習者,代表若學習者能充分運用TAIFS-AE中的主題摘要列表功能來輔助討論活動,則TAIFS-AE將能有效促進學習者進行線上討論時的表現。
基於研究結果,本研究提出TAIFS-AE教學與系統改善建議以及未來能夠延伸的研究方向。整體而言,本研究將討論區學習、自然語言處理與資料視覺化等技術進行整合所發展之TAIFS-AE,提供科技輔助線上討論之創新有效學習工具,對於促進數位學習之線上討論具有貢獻。
In online discussions, learners usually need to spend a lot of time to understand the content of the discussion, resulting in low learning effectiveness. Although the previous research has developed a Topic Analysis Instant Feedback System (TAIFS) (Chen, Li, Chang & Chen, 2021) that uses several keywords to represent the topic of discussion to solve this problem, it is still difficult for learners to comprehend the discussion content. Therefore, this study uses the topic model and abstract extraction technology of LDA (Latent Dirichlet Allocation) to develop Topic Analysis Instant Feedback System with Abstract Extraction (TAIFS-AE), try to decrease the time that learners need to spend to understand the discussion content in online discussions and support learners to comprehend the aspects of the overall discussion easier.
This experiment adopts the true-experimental design and recruits 29 college students through the internet as research objects, 14 of them are randomly assigned to the experimental group using TAIFS-AE supplemented by online discussion, the other 15 students are assigned to the control group using TAIFS supplemented by online discussion to conduct a discussion on the topic of COVID-19, explore whether there are significant differences between the two groups of learning effectiveness and technological acceptance. Furthermore, use prior knowledge as a background variable to explore whether learners with different prior knowledge have significant differences in learning effectiveness and technological acceptance. In addition, this research uses Lag Sequential Analysis (LSA) to explore the behavior patterns of learners in the experimental group.
The results of the study found that there was no significant difference between the learners who used TAIFS-AE and the learners who used TAIFS of learning effectiveness and technological acceptance. However, the technological acceptances of the two groups are higher than the median grade of the questionnaire, indicating that they have positive attitude toward technological acceptance. Moreover, this study found the results of learners’ operation record that the number of clicks on summary list function by TAIFS-AE has a significant positive correlation with the learning effectiveness of overall score and scores of perspectives.
In addition, the group that uses the TAIFS-AE to assist online discussion, learners who clicked on the summary list function more often had the significantly better overall score and scores of perspectives in the discussion of learning effectiveness than those who clicked on the summary list function less. Which means that if learners can make full use of the topic summary list function in TAIFS-AE to assist the discussion activities, then TAIFS-AE will promote learners’ performance in online discussions.
Based on the results, this research puts forward suggestions for the improvement of TAIFS-AE, as well as research directions that can be extended in the future. This research integrates online discussion, natural language processing, and data visualization technology to develop TAIFS-AE, and provides innovative and effective learning tools that assist online discussion with technology and contributes to the promotion of online discussions in digital learning.
參考文獻 AbuSeileek, A. F. (2012). The effect of computer-assisted cooperative learning methods and group size on the EFL learners’ achievement in communication skills. Computers & Education, 58(1), 231-239.
Adetimirin, A. (2015). An empirical study of online discussion forums by library and information science postgraduate students using technology acceptance model 3. Journal of Information Technology Education: Research, 14(1), 257-269.
Anderson, J. R. (1996). ACT: A simple theory of complex cognition. American psychologist, 51(4), 355.
Atapattu, T., Falkner, K., & Tarmazdi, H. (2016). Topic-Wise Classification of MOOC Discussions: A Visual Analytics Approach. International Educational Data Mining Society.
Bates, A. T. (2005). Technology, e-learning and distance education. Routledge.
Belcher, D. D. (1999). Authentic interaction in a virtual classroom: leveling the playing field in a graduate seminar1. Computers and Composition, 16(2), 253-267.
Bizer, C., Heath, T., & Berners-Lee, T. (2011). Linked data: The story so far. In Semantic services, interoperability and web applications: emerging concepts (pp. 205-227). IGI global.
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. the Journal of machine Learning research, 3, 993-1022.
Boyles, N., & Scherer, M. (2012). Closing in on close reading. On Developing Readers: Readings from Educational Leadership, EL Essentials, 89-99..
Card, K. A., & Horton, L. (2000). Providing access to graduate education using computer-mediated communication. International journal of instructional media, 27(3), 235.
Caris, M. I. E. K. E., Ferguson, D., & Gordon, G. (2002). Teaching over the web versus in the classroom: Differences in the instructor experience. International Journal of Instructional Media, 29(1), 61-67.
Chen, C. M., & Tsao, H. W. (2021). An instant perspective comparison system to facilitate learners’ discussion effectiveness in an online discussion process. Computers & Education, 164, 104037.
Chen, C. M., Li, M. C., & Huang, Y. L. (2020). Developing an instant semantic analysis and feedback system to facilitate learning performance of online discussion. Interactive Learning Environments, 1-19..
Chen, C. M., Li, M. C., Chang, W. C., & Chen, X. X. (2021). Developing a Topic Analysis Instant Feedback System to facilitate asynchronous online discussion effectiveness. Computers & Education, 163, 104095.
Chung, G. K., & Baker, E. L. (2003). An exploratory study to examine the feasibility of measuring problem-solving processes using a click-through interface. The Journal of Technology, Learning and Assessment, 2(2).
Colucci‐Gray, L., Camino, E., Barbiero, G., & Gray, D. (2006). From scientific literacy to sustainability literacy: An ecological framework for education. Science Education, 90(2), 227-252.
DeBoer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 37(6), 582-601.
Driver, R., Asoko, H., Leach, J., Scott, P., & Mortimer, E. (1994). Constructing scientific knowledge in the classroom. Educational researcher, 23(7), 5-12.
Ellis, R. A., & Calvo, R. A. (2004). Learning through discussions in blended environments. Educational media international, 41(3), 263-274.
Ezen-Can, A., Boyer, K. E., Kellogg, S., & Booth, S. (2015, March). Unsupervised modeling for understanding MOOC discussion forums: a learning analytics approach. In Proceedings of the fifth international conference on learning analytics and knowledge (pp. 146-150).
Gunawardena, C. N., Lowe, C. A., & Anderson, T. (1997). Analysis of a global online debate and the development of an interaction analysis model for examining social construction of knowledge in computer conferencing. Journal of educational computing research, 17(4), 397-431.
Haavind, S., & Tinker, R. (2001). FACll.. lTATlNG ONLINE LEARNING.. EFFECTIVE STRATEGIES FOR MODERATORS. Quarterly Review of Distance Education, 2(4), 397-401.
Hahn, C. L. (1996). Research on issues-centered social studies. Handbook on teaching social issues, 25-41.
Hara, N., Bonk, C. J., & Angeli, C. (2000). Content analysis of online discussion in an applied educational psychology course. Instructional science, 28(2), 115-152.
Harasim, L. M. (1990). Online education: Perspectives on a new environment. Greenwood Publishing Group Inc.
Harrington, H. (1992). Fostering critical reflection through technology: Preparing prospective teachers for a changing society. Journal of Information Technology for Teacher Education, 1(1), 67-82.
Hiltz, S. R. (1994). The virtual classroom: Learning without limits via computer networks. Intellect Books.
Hirumi, A., & Bermudez, A. (1996). Interactivity, distance education, and instructional systems design converge on the information superhighway. Journal of research on computing in education, 29(1), 1-16.
Hung, D., Tan, S. C., & Der-Thanq, C. (2005). How the Internet facilitates learning as dialog: Design considerations for online discussions. International Journal of Instructional Media, 32(1), 37.
Jacob, S., & Radhai, S. (2016). Trends in ICT e-learning: Challenges and expectations. International Journal of Innovative Research and Development, 5(2Sp), 196-201.
Jänicke, S., Franzini, G., Cheema, M. F., & Scheuermann, G. (2017, September). Visual text analysis in digital humanities. In Computer Graphics Forum (Vol. 36, No. 6, pp. 226-250).
Jeong, A. C. (2003). The sequential analysis of group interaction and critical thinking in online. The American Journal of Distance Education, 17(1), 25-43.
Jia, H., & Liu, X. (2013). Scientific referential metadata creation with information retrieval and labeled topic modeling.
Kern, R. G. (1995). Restructuring classroom interaction with networked computers: Effects on quantity and characteristics of language production. The Modern language journal, 79(4), 457-476.
King, K. P. (2001). Educators revitalize the classroom “bulletin board” a case study of the influence of online dialogue on face-to-face classes from an adult learning perspective. Journal of research on computing in education, 33(4), 337-354.
Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., & Dyer, C. (2016). Neural architectures for named entity recognition. arXiv preprint arXiv:1603.01360.
Levinson, R. (2006). Towards a theoretical framework for teaching controversial socio‐scientific issues. International Journal of Science Education, 28(10), 1201-1224.
Lewis, J., & Leach, J. (2006). Discussion of socio‐scientific issues: The role of science knowledge. International Journal of Science Education, 28(11), 1267-1287.
Lim, C. P., & Chai, C. S. (2004). An activity-theoretical approach to research of ICT integration in Singapore schools: Orienting activities and learner autonomy. Computers & Education, 43(3), 215-236.
Lin, C. Y., & Hovy, E. (2002, July). From single to multi-document summarization. In Proceedings of the 40th annual meeting of the association for computational linguistics (pp. 457-464).
Lyons, T., & Evans, M. M. (2013). Blended learning to increase student satisfaction: an exploratory study. Internet reference services quarterly, 18(1), 43-53.
MacKnight, C. B. (2000). Teaching critical thinking through online discussions. Educause Quarterly, 23(4), 38-41.
MacKnight, C. B. (2000). Teaching critical thinking through online discussions. Educause Quarterly, 23(4), 38-41.
Marra, R. M., Moore, J. L., & Klimczak, A. K. (2004). Content analysis of online discussion forums: A comparative analysis of protocols. Educational Technology Research and Development, 52(2), 23.
Meyer, K. A. (2004). Evaluating online discussions: Four different frames of analysis. Journal of Asynchronous Learning Networks, 8(2), 101-114.
Ming, N., & Baumer, E. (2011). Using Text Mining to Characterize Online Discussion Facilitation. Journal of Asynchronous Learning Networks, 15(2), 71-109..
Moallem, M. (2003). An interactive online course: A collaborative design model. Educational Technology Research and Development, 51(4), 85-103.
Moretti, G., Sprugnoli, R., Menini, S., & Tonelli, S. (2016). ALCIDE: Extracting and visualising content from large document collections to support humanities studies. Knowledge-Based Systems, 111, 100-112.
Newman, D. R. (1995). A content analysis method to measure critical thinking in face-to-face and computer supported group learning. Interpersonal Computing and Technology Journal, 3(2), 56-77.
Pollock, P. H., & Wilson, B. M. (2002). Evaluating the impact of internet teaching: Preliminary evidence from American national government classes. PS: Political Science & Politics, 35(3), 561-566.
Robertson, S. E., & Jones, K. S. (1976). Relevance weighting of search terms. Journal of the American Society for Information science, 27(3), 129-146.
Sadler, T. D., Romine, W. L., Stuart, P. E., & Merle‐Johnson, D. (2013). Game‐based curricula in biology classes: Differential effects among varying academic levels. Journal of Research in Science Teaching, 50(4), 479-499.
Salmon, G. (2003). E-moderating: The key to teaching and learning online. Psychology Press.
Sanders, D. W., & Morrison-Shetlar, A. I. (2001). Student attitudes toward web-enhanced instruction in an introductory biology course. Journal of Research on computing in Education, 33(3), 251-262.
Sins, P. H., Savelsbergh, E. R., van Joolingen, W. R., & van Hout-Wolters, B. H. (2011). Effects of face-to-face versus chat communication on performance in a collaborative inquiry modeling task. Computers & Education, 56(2), 379-387.
SOLOMON, J., & MAZZOLINI, M. (2004). How can the computer help students in this age of life long learning?. In Teaching And Learning Of Physics In Cultural Contexts (pp. 433-440).
SOLOMON, J., & MAZZOLINI, M. (2004). How can the computer help students in this age of life long learning?. In Teaching And Learning Of Physics In Cultural Contexts (pp. 433-440).
Sun, G., & Bin, S. (2018). Topic Interaction Model Based on Local Community Detection in MOOC Discussion Forums and its Teaching. Educational Sciences: Theory & Practice, 18(6).
Tiene, D. (2000). Online discussions: A survey of advantages and disadvantages compared to face-to-face discussions. Journal of Educational Multimedia and Hypermedia, 9(4), 369-382.
Wang, W., Feng, Y., & Dai, W. (2018). Topic analysis of online reviews for two competitive products using latent Dirichlet allocation. Electronic Commerce Research and Applications, 29, 142-156.
Warschauer, M. (1995). Comparing face-to-face and electronic discussion in the second language classroom. CALICO journal, 7-26.
Webb, D. J., & Mohr, L. A. (1998). A typology of consumer responses to cause-related marketing: From skeptics to socially concerned. Journal of public policy & marketing, 17(2), 226-238.
Yan, X., Guo, J., Lan, Y., & Cheng, X. (2013, May). A biterm topic model for short texts. In Proceedings of the 22nd international conference on World Wide Web (pp. 1445-1456).
Yang, Y., Yao, Q., & Qu, H. (2017). VISTopic: A visual analytics system for making sense of large document collections using hierarchical topic modeling. Visual Informatics, 1(1), 40-47.
Zeidler, D. L., & Zeidler, L. (Eds.). (2003). The role of moral reasoning on socioscientific issues and discourse in science education (Vol. 19). Springer Science & Business Media.
Zohar, A., & Nemet, F. (2002). Fostering students` knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 39(1), 35-62.
描述 碩士
國立政治大學
圖書資訊與檔案學研究所
108155013
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0108155013
資料類型 thesis
dc.contributor.advisor 陳志銘zh_TW
dc.contributor.advisor Chen, Chih-Mingen_US
dc.contributor.author (Authors) 陳冠霖zh_TW
dc.contributor.author (Authors) Chen, Kuan-Linen_US
dc.creator (作者) 陳冠霖zh_TW
dc.creator (作者) Chen, Kuan-Linen_US
dc.date (日期) 2021en_US
dc.date.accessioned 2-Sep-2021 16:35:28 (UTC+8)-
dc.date.available 2-Sep-2021 16:35:28 (UTC+8)-
dc.date.issued (上傳時間) 2-Sep-2021 16:35:28 (UTC+8)-
dc.identifier (Other Identifiers) G0108155013en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/136924-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 圖書資訊與檔案學研究所zh_TW
dc.description (描述) 108155013zh_TW
dc.description.abstract (摘要) 為了解決線上討論中學習者常常需要耗費大量時間對討論內容進行理解,以及討論內容經處理分析後常出現資訊過於抽象、解釋性不足,因而導致影響學習者討論學習成效的問題,本研究採用文本探勘技術中的LDA (Latent Dirichlet Allocation)主題分析模型及摘要抽取技術,發展具摘要萃取之主題分析即時回饋系統(Topic Analysis Instant Feedback System with Abstract Extraction, TAIFS-AE),改善Chen, Li, Chang 與 Chen (2021)所提出的主題分析即時回饋系統(Topic Analysis Instant Feedback System, TAIFS),以降低TAIFS 採用LDA主題分析模型,並以幾個關鍵字代表所分析主題,仍難以讓學習者清楚解讀主題意涵的問題,以幫助學習者能更精確掌握整體討論的概要,以及議題討論的面向。
本實驗採真實驗研究法,透過網路招募各大專院校學生共29人為研究對象,將其中14位學生隨機分派為使用TAIFS-AE(提供主題摘要列表)輔以線上討論的實驗組,另外15位學生則分派為使用TAIFS(提供主題關鍵字)的控制組,進行「新冠肺炎防疫應變」之社會性科學議題(Socio-Scientific Issues, SSI)線上討論。以探討兩組學習者在討論學習成效與科技接受度上是否具有顯著的差異,並且以先備知識作為背景變項,探討不同先備知識之學習者,在學習成效與科技接受度上是否具有顯著差異。此外,也透過滯後序列分析(Lag Sequential Analysis,LSA)探討實驗組學習者之有效行為模式。
研究結果發現,使用TAIFS-AE與使用TAIFS的學習者在討論學習成效上沒有顯著的差異,而兩組學習者在科技接受度上亦無顯著的差異,但是兩組學習者的科技接受度均高於中位數,顯示其科技接受度良好。本研究進一步透過行為歷程分析的結果發現,採用TAIFS-AE學習者在摘要句點擊次數與整體學習成效以及多元觀點之分數具有顯著正相關。此外,在使用TAIFS-AE輔助線上討論的組別中,點擊摘要列表功能次數較多的學習者在討論學習成效中的總分及多元觀點面向上顯著優於較少點擊摘要列表功能的學習者,代表若學習者能充分運用TAIFS-AE中的主題摘要列表功能來輔助討論活動,則TAIFS-AE將能有效促進學習者進行線上討論時的表現。
基於研究結果,本研究提出TAIFS-AE教學與系統改善建議以及未來能夠延伸的研究方向。整體而言,本研究將討論區學習、自然語言處理與資料視覺化等技術進行整合所發展之TAIFS-AE,提供科技輔助線上討論之創新有效學習工具,對於促進數位學習之線上討論具有貢獻。
zh_TW
dc.description.abstract (摘要) In online discussions, learners usually need to spend a lot of time to understand the content of the discussion, resulting in low learning effectiveness. Although the previous research has developed a Topic Analysis Instant Feedback System (TAIFS) (Chen, Li, Chang & Chen, 2021) that uses several keywords to represent the topic of discussion to solve this problem, it is still difficult for learners to comprehend the discussion content. Therefore, this study uses the topic model and abstract extraction technology of LDA (Latent Dirichlet Allocation) to develop Topic Analysis Instant Feedback System with Abstract Extraction (TAIFS-AE), try to decrease the time that learners need to spend to understand the discussion content in online discussions and support learners to comprehend the aspects of the overall discussion easier.
This experiment adopts the true-experimental design and recruits 29 college students through the internet as research objects, 14 of them are randomly assigned to the experimental group using TAIFS-AE supplemented by online discussion, the other 15 students are assigned to the control group using TAIFS supplemented by online discussion to conduct a discussion on the topic of COVID-19, explore whether there are significant differences between the two groups of learning effectiveness and technological acceptance. Furthermore, use prior knowledge as a background variable to explore whether learners with different prior knowledge have significant differences in learning effectiveness and technological acceptance. In addition, this research uses Lag Sequential Analysis (LSA) to explore the behavior patterns of learners in the experimental group.
The results of the study found that there was no significant difference between the learners who used TAIFS-AE and the learners who used TAIFS of learning effectiveness and technological acceptance. However, the technological acceptances of the two groups are higher than the median grade of the questionnaire, indicating that they have positive attitude toward technological acceptance. Moreover, this study found the results of learners’ operation record that the number of clicks on summary list function by TAIFS-AE has a significant positive correlation with the learning effectiveness of overall score and scores of perspectives.
In addition, the group that uses the TAIFS-AE to assist online discussion, learners who clicked on the summary list function more often had the significantly better overall score and scores of perspectives in the discussion of learning effectiveness than those who clicked on the summary list function less. Which means that if learners can make full use of the topic summary list function in TAIFS-AE to assist the discussion activities, then TAIFS-AE will promote learners’ performance in online discussions.
Based on the results, this research puts forward suggestions for the improvement of TAIFS-AE, as well as research directions that can be extended in the future. This research integrates online discussion, natural language processing, and data visualization technology to develop TAIFS-AE, and provides innovative and effective learning tools that assist online discussion with technology and contributes to the promotion of online discussions in digital learning.
en_US
dc.description.tableofcontents 第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 研究問題 4
第四節 研究範圍與限制 4
第五節 名詞解釋 5
第二章 文獻探討 7
第一節 線上討論相關研究 7
第二節 隱含狄利克雷分布主題模型 11
第三章 系統設計 13
第一節 系統架構介紹 13
第二節 系統介面與功能說明 15
第三節 主題摘要抽取方法 19
第四節 系統開發環境 22
第四章 研究設計與實施 24
第一節 研究架構 24
第二節 研究方法 27
第三節 研究對象 28
第四節 實驗設計 29
第五節 研究工具 33
第六節 資料處理與分析 40
第七節 研究實施步驟 42
第五章 實驗結果分析 44
第一節 使用TAIFS-AE與TAIFS支援線上討論的兩組學習者之學習成效、科技接受度差異分析 45
一、實驗組與控制組學習者之學習成效差異分析 45
二、實驗組與控制組學習者之科技接受度差異分析 47
第二節 使用TAIFS-AE與TAIFS支援線上討論的不同先備知識學習者之學習成效與科技接受度差異分析 49
一、兩組不同先備知識學習者之學習成效差異分析 51
二、不同先備知識兩組學習者之科技接受度差異 54
第三節 學習者使用TAIFS-AE之有效學習行為歷程模式分析 56
一、TAIFS-AE系統使用行為與學習成效之相關分析 56
二、TAIFS-AE高、低分組學習者之學習成效與科技接受度差異分析 57
三、TAIFS-AE高、低學習表現組學習者之學習歷程行為分析 62
四、使用TAIFS-AE高、低摘要句點擊次數學習者之學習成效與科技接受度差異分析 66
五、TAIFS-AE高、低次數摘要句點擊習組學習者之學習歷程行為分析 70
第四節 質性資料分析 75
一、訪談對象背景資料 75
二、質性訪談結果與學習成效之對應關聯分析 75
三、系統使用回饋與改善建議 79
第五節 綜合討論 83
一、學習成效差異分析之結果與討論 83
二、科技接受度分析之結果與討論 86
三、TAIFS-AE操作行為分析之結果與討論 88
第六章 結論與建議 91
第一節 結論 91
一、使用TAIFS-AE與TAIFS輔以線上討論之全體學習者以及不同先備知識學習者在學習成效皆不具有顯著的差異 91
二、使用TAIFS-AE與TAIFS輔助線上討論之全體學習者以及不同先備知識學習者在科技接受度皆不具有顯著的差異 91
三、使用TAIFS-AE之學習者,摘要句點擊次數與整體學習成效以及多元觀點之分數具有顯著正相關 92
四、使用TAIFS-AE之學習者,高、低次數摘要句點擊組學習者在整體學習成效以及多元觀點與探究面向之學習成效具有顯著的差異 92
五、使用TAIFS-AE之高低學習表現組學習者的行為模式比較 93
六、使用TAIFS-AE之高低次數摘要句點擊組學習者的行為模式比較 93
第二節 教學實施與系統改善建議 95
一、 TAIFS-AE教學實施建議 95
二、 TAIFS-AE系統改善建議 97
三、 Moodle討論區優化建議 98
第三節 未來研究方向 100
一、 結合不同文本呈現方式改善TAIFS-AE,以提升複雜度面向之學習成效 100
二、 改善TAIFS-AE外部搜尋功能,提升探究面向之學習成效 100
三、 探討學習者在長時間使用TAIFS-AE輔以線上討論對於學習成效的影響 101
參考文獻 102
附件一 參與研究同意書 108
附件二 科技接受度量表 109
附件三 個人觀點學習單 113
附件四 小組討論目標 114
附件五 訪談大綱 115
zh_TW
dc.format.extent 3070472 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0108155013en_US
dc.subject (關鍵詞) 線上討論zh_TW
dc.subject (關鍵詞) 隱含狄利克雷分布主題模型zh_TW
dc.subject (關鍵詞) BM25zh_TW
dc.subject (關鍵詞) 自動摘要zh_TW
dc.subject (關鍵詞) 社會性科學議題zh_TW
dc.subject (關鍵詞) 學習行為歷程zh_TW
dc.subject (關鍵詞) 科技接受度zh_TW
dc.subject (關鍵詞) Online Discussionen_US
dc.subject (關鍵詞) Latent Dirichlet Allocationen_US
dc.subject (關鍵詞) BM25en_US
dc.subject (關鍵詞) Automatic Summarizationen_US
dc.subject (關鍵詞) Socio-Scientific Issuesen_US
dc.subject (關鍵詞) Learning Behavioren_US
dc.subject (關鍵詞) Technology Acceptance Modelen_US
dc.title (題名) 具主題式文本摘要萃取之線上討論工具發展與應用研究zh_TW
dc.title (題名) A Topic Modeling Scheme with Abstract Extraction to Facilitate Asynchronous Online Discussion Performanceen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) AbuSeileek, A. F. (2012). The effect of computer-assisted cooperative learning methods and group size on the EFL learners’ achievement in communication skills. Computers & Education, 58(1), 231-239.
Adetimirin, A. (2015). An empirical study of online discussion forums by library and information science postgraduate students using technology acceptance model 3. Journal of Information Technology Education: Research, 14(1), 257-269.
Anderson, J. R. (1996). ACT: A simple theory of complex cognition. American psychologist, 51(4), 355.
Atapattu, T., Falkner, K., & Tarmazdi, H. (2016). Topic-Wise Classification of MOOC Discussions: A Visual Analytics Approach. International Educational Data Mining Society.
Bates, A. T. (2005). Technology, e-learning and distance education. Routledge.
Belcher, D. D. (1999). Authentic interaction in a virtual classroom: leveling the playing field in a graduate seminar1. Computers and Composition, 16(2), 253-267.
Bizer, C., Heath, T., & Berners-Lee, T. (2011). Linked data: The story so far. In Semantic services, interoperability and web applications: emerging concepts (pp. 205-227). IGI global.
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. the Journal of machine Learning research, 3, 993-1022.
Boyles, N., & Scherer, M. (2012). Closing in on close reading. On Developing Readers: Readings from Educational Leadership, EL Essentials, 89-99..
Card, K. A., & Horton, L. (2000). Providing access to graduate education using computer-mediated communication. International journal of instructional media, 27(3), 235.
Caris, M. I. E. K. E., Ferguson, D., & Gordon, G. (2002). Teaching over the web versus in the classroom: Differences in the instructor experience. International Journal of Instructional Media, 29(1), 61-67.
Chen, C. M., & Tsao, H. W. (2021). An instant perspective comparison system to facilitate learners’ discussion effectiveness in an online discussion process. Computers & Education, 164, 104037.
Chen, C. M., Li, M. C., & Huang, Y. L. (2020). Developing an instant semantic analysis and feedback system to facilitate learning performance of online discussion. Interactive Learning Environments, 1-19..
Chen, C. M., Li, M. C., Chang, W. C., & Chen, X. X. (2021). Developing a Topic Analysis Instant Feedback System to facilitate asynchronous online discussion effectiveness. Computers & Education, 163, 104095.
Chung, G. K., & Baker, E. L. (2003). An exploratory study to examine the feasibility of measuring problem-solving processes using a click-through interface. The Journal of Technology, Learning and Assessment, 2(2).
Colucci‐Gray, L., Camino, E., Barbiero, G., & Gray, D. (2006). From scientific literacy to sustainability literacy: An ecological framework for education. Science Education, 90(2), 227-252.
DeBoer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 37(6), 582-601.
Driver, R., Asoko, H., Leach, J., Scott, P., & Mortimer, E. (1994). Constructing scientific knowledge in the classroom. Educational researcher, 23(7), 5-12.
Ellis, R. A., & Calvo, R. A. (2004). Learning through discussions in blended environments. Educational media international, 41(3), 263-274.
Ezen-Can, A., Boyer, K. E., Kellogg, S., & Booth, S. (2015, March). Unsupervised modeling for understanding MOOC discussion forums: a learning analytics approach. In Proceedings of the fifth international conference on learning analytics and knowledge (pp. 146-150).
Gunawardena, C. N., Lowe, C. A., & Anderson, T. (1997). Analysis of a global online debate and the development of an interaction analysis model for examining social construction of knowledge in computer conferencing. Journal of educational computing research, 17(4), 397-431.
Haavind, S., & Tinker, R. (2001). FACll.. lTATlNG ONLINE LEARNING.. EFFECTIVE STRATEGIES FOR MODERATORS. Quarterly Review of Distance Education, 2(4), 397-401.
Hahn, C. L. (1996). Research on issues-centered social studies. Handbook on teaching social issues, 25-41.
Hara, N., Bonk, C. J., & Angeli, C. (2000). Content analysis of online discussion in an applied educational psychology course. Instructional science, 28(2), 115-152.
Harasim, L. M. (1990). Online education: Perspectives on a new environment. Greenwood Publishing Group Inc.
Harrington, H. (1992). Fostering critical reflection through technology: Preparing prospective teachers for a changing society. Journal of Information Technology for Teacher Education, 1(1), 67-82.
Hiltz, S. R. (1994). The virtual classroom: Learning without limits via computer networks. Intellect Books.
Hirumi, A., & Bermudez, A. (1996). Interactivity, distance education, and instructional systems design converge on the information superhighway. Journal of research on computing in education, 29(1), 1-16.
Hung, D., Tan, S. C., & Der-Thanq, C. (2005). How the Internet facilitates learning as dialog: Design considerations for online discussions. International Journal of Instructional Media, 32(1), 37.
Jacob, S., & Radhai, S. (2016). Trends in ICT e-learning: Challenges and expectations. International Journal of Innovative Research and Development, 5(2Sp), 196-201.
Jänicke, S., Franzini, G., Cheema, M. F., & Scheuermann, G. (2017, September). Visual text analysis in digital humanities. In Computer Graphics Forum (Vol. 36, No. 6, pp. 226-250).
Jeong, A. C. (2003). The sequential analysis of group interaction and critical thinking in online. The American Journal of Distance Education, 17(1), 25-43.
Jia, H., & Liu, X. (2013). Scientific referential metadata creation with information retrieval and labeled topic modeling.
Kern, R. G. (1995). Restructuring classroom interaction with networked computers: Effects on quantity and characteristics of language production. The Modern language journal, 79(4), 457-476.
King, K. P. (2001). Educators revitalize the classroom “bulletin board” a case study of the influence of online dialogue on face-to-face classes from an adult learning perspective. Journal of research on computing in education, 33(4), 337-354.
Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., & Dyer, C. (2016). Neural architectures for named entity recognition. arXiv preprint arXiv:1603.01360.
Levinson, R. (2006). Towards a theoretical framework for teaching controversial socio‐scientific issues. International Journal of Science Education, 28(10), 1201-1224.
Lewis, J., & Leach, J. (2006). Discussion of socio‐scientific issues: The role of science knowledge. International Journal of Science Education, 28(11), 1267-1287.
Lim, C. P., & Chai, C. S. (2004). An activity-theoretical approach to research of ICT integration in Singapore schools: Orienting activities and learner autonomy. Computers & Education, 43(3), 215-236.
Lin, C. Y., & Hovy, E. (2002, July). From single to multi-document summarization. In Proceedings of the 40th annual meeting of the association for computational linguistics (pp. 457-464).
Lyons, T., & Evans, M. M. (2013). Blended learning to increase student satisfaction: an exploratory study. Internet reference services quarterly, 18(1), 43-53.
MacKnight, C. B. (2000). Teaching critical thinking through online discussions. Educause Quarterly, 23(4), 38-41.
MacKnight, C. B. (2000). Teaching critical thinking through online discussions. Educause Quarterly, 23(4), 38-41.
Marra, R. M., Moore, J. L., & Klimczak, A. K. (2004). Content analysis of online discussion forums: A comparative analysis of protocols. Educational Technology Research and Development, 52(2), 23.
Meyer, K. A. (2004). Evaluating online discussions: Four different frames of analysis. Journal of Asynchronous Learning Networks, 8(2), 101-114.
Ming, N., & Baumer, E. (2011). Using Text Mining to Characterize Online Discussion Facilitation. Journal of Asynchronous Learning Networks, 15(2), 71-109..
Moallem, M. (2003). An interactive online course: A collaborative design model. Educational Technology Research and Development, 51(4), 85-103.
Moretti, G., Sprugnoli, R., Menini, S., & Tonelli, S. (2016). ALCIDE: Extracting and visualising content from large document collections to support humanities studies. Knowledge-Based Systems, 111, 100-112.
Newman, D. R. (1995). A content analysis method to measure critical thinking in face-to-face and computer supported group learning. Interpersonal Computing and Technology Journal, 3(2), 56-77.
Pollock, P. H., & Wilson, B. M. (2002). Evaluating the impact of internet teaching: Preliminary evidence from American national government classes. PS: Political Science & Politics, 35(3), 561-566.
Robertson, S. E., & Jones, K. S. (1976). Relevance weighting of search terms. Journal of the American Society for Information science, 27(3), 129-146.
Sadler, T. D., Romine, W. L., Stuart, P. E., & Merle‐Johnson, D. (2013). Game‐based curricula in biology classes: Differential effects among varying academic levels. Journal of Research in Science Teaching, 50(4), 479-499.
Salmon, G. (2003). E-moderating: The key to teaching and learning online. Psychology Press.
Sanders, D. W., & Morrison-Shetlar, A. I. (2001). Student attitudes toward web-enhanced instruction in an introductory biology course. Journal of Research on computing in Education, 33(3), 251-262.
Sins, P. H., Savelsbergh, E. R., van Joolingen, W. R., & van Hout-Wolters, B. H. (2011). Effects of face-to-face versus chat communication on performance in a collaborative inquiry modeling task. Computers & Education, 56(2), 379-387.
SOLOMON, J., & MAZZOLINI, M. (2004). How can the computer help students in this age of life long learning?. In Teaching And Learning Of Physics In Cultural Contexts (pp. 433-440).
SOLOMON, J., & MAZZOLINI, M. (2004). How can the computer help students in this age of life long learning?. In Teaching And Learning Of Physics In Cultural Contexts (pp. 433-440).
Sun, G., & Bin, S. (2018). Topic Interaction Model Based on Local Community Detection in MOOC Discussion Forums and its Teaching. Educational Sciences: Theory & Practice, 18(6).
Tiene, D. (2000). Online discussions: A survey of advantages and disadvantages compared to face-to-face discussions. Journal of Educational Multimedia and Hypermedia, 9(4), 369-382.
Wang, W., Feng, Y., & Dai, W. (2018). Topic analysis of online reviews for two competitive products using latent Dirichlet allocation. Electronic Commerce Research and Applications, 29, 142-156.
Warschauer, M. (1995). Comparing face-to-face and electronic discussion in the second language classroom. CALICO journal, 7-26.
Webb, D. J., & Mohr, L. A. (1998). A typology of consumer responses to cause-related marketing: From skeptics to socially concerned. Journal of public policy & marketing, 17(2), 226-238.
Yan, X., Guo, J., Lan, Y., & Cheng, X. (2013, May). A biterm topic model for short texts. In Proceedings of the 22nd international conference on World Wide Web (pp. 1445-1456).
Yang, Y., Yao, Q., & Qu, H. (2017). VISTopic: A visual analytics system for making sense of large document collections using hierarchical topic modeling. Visual Informatics, 1(1), 40-47.
Zeidler, D. L., & Zeidler, L. (Eds.). (2003). The role of moral reasoning on socioscientific issues and discourse in science education (Vol. 19). Springer Science & Business Media.
Zohar, A., & Nemet, F. (2002). Fostering students` knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 39(1), 35-62.
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU202101446en_US