Publications-Theses
Article View/Open
Publication Export
-
題名 應用大數據分析商用不動產市場、股票市場情緒與收益之交叉關聯
Big Data Analytics: How the Commercial Real Estate and Stock Market’s Sentiment Affects the Commercial Real Estate Investment作者 黃瀞誼
Huang, Ching-Yi貢獻者 林左裕
黃瀞誼
Huang, Ching-Yi關鍵詞 網路聲量情緒
社群媒體
新聞媒體
商用不動產市場
向量自我迴歸
Online Sentiment
Social media
News Media
Commercial Real Estate Market
Vector Auto Regression (VAR)日期 2021 上傳時間 2-Sep-2021 17:34:03 (UTC+8) 摘要 本研究以網路討論熱度作為市場需求的參考,主要探討商用不動產市場、股票市場之網路聲量情緒對各市場收益之影響,以向量自我迴歸模型(VAR)分析市場情緒與價格之動態關聯。另考慮到商用不動產市場與股票市場情緒變數蒐集之原始聲量來源眾多,蒐集網站如Facebook、Instagram、PTT、Mobile 01、Dcard、ETtoday、Linetoday…等,惟各網站之屬性不同,像是Facebook、Instagram、PTT、Mobile 01與Dcard多半是自發性討論或針對特定議題進行回覆與留言,為較開放且隨機之言論;ETtoday與Linetoday則是電子新聞報導,其中可能夾雜廣告、宣傳或教育之性質,故本研究將網路聲量進行分類,將來源細分為多半是自發性發言之「網路社群」與具有宣傳、廣告性質之「新聞媒體」等二來源集,分別建構情緒指標,嘗試以兩種不同性質的聲量屬性角度探討商用不動產市場與股票市場情緒與價格之關聯性。實證結果發現,前兩個月至前四個月的商用不動產市場「網路社群」聲量情緒將正向影響當期的商用不動產市場收益;而前兩個月與前三個月的商用不動產市場「新聞媒體」聲量情緒負向影響當期的商用不動產市場收益,顯示網路社群與新聞媒體之討論內容與熱度確實對於商用不動產市場具解釋效果。此外,本研究亦發現前兩個月的股票產市場「新聞媒體」聲量情緒將正向影響當期的商用不動產市場收益,換句話說,股票市場之聲量情緒可以用於預測未來商用不動產市場之發展趨勢,證實股票市場與商用不動產市場間存在情緒外溢效應。透過網路社群或新聞媒體之討論情緒不僅可補足過去單靠總體經濟變數所無法解釋之市場意向,亦提供商用不動產市場一新穎的預測指標。本研究之實證結果可提供政府、投資者或不動產相關從業人員在觀察市場、進行投資決策或政策制定之參考依據。
This research uses the popularity of internet discussions as a reference for market demand, and explores the impact of online sentiment on the price of the commercial real estate market and the stock market, as well as analyzes the dynamic relationship between the sentiment of the market and the revenue of the market with the Vector Auto Regression model. In addition, this research divides the online sentiment into two source sets: " social media" that involve spontaneous discussions and "news media" that potentially involve propaganda and advertising.The empirical results show that the sentiment of the " social media " in the commercial real estate market during last two months to last four months positively affects the current commercial real estate market revenue; while the sentiment of the "news media" in the real estate market during last two months and last three months negatively affects the current commercial real estate market revenue, which also indicates that the content and the popularity of discussions between the internet and the news media do have an explanatory effect on the commercial real estate market. Moreover, this study shows that online sentiment of the "news media" in the stock market during last two months positively affects the current commercial real estate market earnings. In other words, the development trend of the market confirms that there is a spillover effect between the stock market and the commercial real estate market.參考文獻 一、中文參考文獻王信達,2010,「從兩岸總體經濟環境探討臺北市上海市辦公市場租金影響之實證分析」,淡江大學中國大陸研究所碩士論文。林左裕,2019,「應用網路搜尋行為預測房地產市場」,應用經濟論叢,第105期。林左裕、程于芳,2014,「影響不動產市場之從眾行為與總體經濟因素之研究」,應用經濟論叢,第95期。張曉慈,2010,「影響不動產報酬波動性之總體經濟因素分析」,國立政治大學地政研究所碩士論文。楊奕農,2009,「時間序列分析 經濟與財務上之應用」。頁 99-123、205-235、331-392、395-446,台北,雙葉書廊有限公司。鄧筱蓉,2017,房市泡沫與總體經濟關係,JOURNAL OF HOUSING:26(2).薄有為、鍾懿萍,2011,「辦公大樓租金影響因素之研究-以上海市甲級辦公大樓為例」,『物業管理學會論文集』, 13-22. 二、英文參考文獻Affuso, E., and Lahtinen, K. D., 2019, “Social mediasentiment and market behavior”, Empirical Economics, 57(1):105-127.Agyemang, A., Chowdhury, I., and Balli, F., 2021,“Quantifying Return Spillovers in Global Real EstateMarkets”, Journal of Housing Economics, 101781.Akinsomi, O., Mkhabela, N., and Taderera, M., 2018, “Therole of macro-economic indicators in explaining direct commercial real estate returns: evidence from South Africa”, Journal of Property Research, 35(1):28-52.Baker, M., and Wurgler, J., 2006, “Investor sentiment and the cross‐section of stock returns”, The journal of Finance, 61(4):1645-1680.Baker, M., Wurgler, J., and Yuan, Y., 2012, “Global, local, and contagious investor sentiment”, Journal of financial economics, 104(2):272-287.Beauchamp, N.,2017, “Predicting and interpolating state‐level polls using Twitter textual data”, American Journal of Political Science, 61(2):490-503.Bhuriya, D., Kaushal, G., Sharma, A., and Singh, U., 2017, “Stock market predication using a linear regression”, In 2017 international conference of electronics, communication and aerospace technology (ICECA), (Vol. 2, pp. 510-513). IEEE.Bhuiyan, E. M., and Chowdhury, M., 2020, “Macroeconomic variables and stock market indices: Asymmetric dynamics in the US and Canada”, The Quarterly Review of Economics and Finance, 77:62-74.Carosia, A. E. O., Coelho, G. P., and Silva, A. E. A., 2020, “Analyzing the Brazilian financial market through Portuguese sentiment analysis in social media”, Applied Artificial Intelligence, 34(1):1-19.Checkley, M. S., Higón, D. A., and Alles, H., 2017, “The hasty wisdom of the mob: How market sentiment predicts stock market behavior”, Expert Systems with applications, 77:256-263.Chen, M. C., and K. Patel , 2002 , "The Empirical Analysis of Determination of Housing Prices in the Taipei Area", Taiwan Economic Review, 30(4):563-594.De Long, J. B., Shleifer, A., Summers, L. H., and Waldmann, R. J.,1990,” Noise trader risk in financial markets”, Journal of political Economy, 98(4): 703-738.Devos, E., Ong, S. E., Spieler, A. C., and Tsang, D., 2013,” REIT institutional ownership dynamics and the financial crisis”, The journal of real estate finance and economics, 47(2): 266-288.Dietzel, M. A., 2016, “Sentiment-based predictions of housing market turning points with Google trends”, International Journal of Housing Markets and Analysis.Freybote, J., and Seagraves, P.A., 2017, “Heterogeneous investor sentiment and institutional real estate investments”, Real Estate Economics, 45(1):154-176.Freybote, J., and Seagraves, P., 2018, “The impact of investor sentiment on commercial real estate market liquidity”, Journal of Real Estate Research, 40(4):597-628.Filis, G.,2010, ”Macro economy, stock market and oil prices: do meaningful relationships exist among their cyclical fluctuations? ” Energy Economics, 32(4): 877-886.Gallimore, P., and Gray, A., 2002, “The role of investor sentiment in property investment decisions”, Journal of Property Research, 19(2):111-120.Giordano, G., and Primerano, I., 2018, “The use of network analysis to handle semantic differential data”, Quality & Quantity, 52(3):1173-1192.González-Sánchez, M., and Morales de Vega, M. E., 2021, “Influence of Bloomberg’s Investor Sentiment Index: Evidence from European Union Financial Sector. Mathematics”,9(4):297.Hatfield, E., Cacioppo, J. T., and Rapson, R. L., 1993, “Emotional contagion”, Current directions in psychological science, 2(3):96-100.Hausler, J., Ruscheinsky, J., and Lang, M., 2018, “News-based sentiment analysis in real estate: a machine learning approach”, Journal of Property Research, 35(4):344-371.Heiden, S., Klein, C., and Zwergel, B., 2013, “Beyond fundamentals: investor sentiment and exchange rate forecasting”, European Financial Management, 19(3):558-578.Heinig, S., and Nanda, A., 2018, “Measuring sentiment in real estate–a comparison study”, Journal of Property Investment Finance.Heston, S. L., and Sinha, N. R., 2017, “News vs. sentiment: Predicting stock returns from news stories”, Financial Analysts Journal, 73(3):67-83.Hoskins, N., Higgins, D., and Cardew, R., 2004, “Macroeconomic variables and real estate returns: an international comparison”, The Appraisal Journal, 72(2):163.Hudson, Y., and Green, C. J., 2015, “Is investor sentiment contagious? International sentiment and UK equity returns”, Journal of Behavioral and Experimental Finance, 5:46-59.Hurvich, C. M., Tsai, and C. L., 1989, "Regression and time series model selection in small samples", Biometrika, 76(2):297-307.Kalyani, J., Bharathi, P., and Jyothi, P., 2016, “Stock trend prediction using news sentiment analysis”, arXiv preprint arXiv:1607.01958.Ke, Q., and Sieracki, K, 2019, “Exploring sentiment-driven trading behaviour of different types of investors in the London office market”, Journal of Property Research, 36(2):186-205.Lin, C. Y., Rahman, H., and Yung, K., 2009, “Investor sentiment and REIT returns”, The journal of real estate finance and economics, 39(4):450.Ling, D. C., Naranjo, A., and Scheick, B., 2014, “Investor sentiment, limits to arbitrage and private market returns”, Real Estate Economics, 42(3):531-577.Mehta, P., and Pandya, S., 2020, "A review on sentiment analysis methodologies, practices and applications", International Journal of Scientific and Technology Research, 9(2):601-609.Mehta, P., Pandya, S., Kotecha, K., 2021, “Harvesting social media sentiment analysis to enhance stock market prediction using deep learning”, PeerJ Computer Science, 7: e476.Olanrele, O. O., Fateye, O. B., Adegunle, T. O., Ajayi, C. A., Said, R., and Baaki, K., 2020, “Causal effects of macroeconomic predictors on real estate investment trust’s (REIT’s) performance in Nigeria”, Pacific Rim Property Research Journal, 26(2):149-171.Pagan, A. R., and Wickens, M. R.,1989, “A survey of some recent econometric methods”, The Economic Journal, 99(398): 962-1025.Porshnev, A., Redkin, I., and Shevchenko, A., 2013, “Machine learning in prediction of stock market indicators based on historical data and data from twitter sentiment analysis”, In 2013 IEEE 13th International Conference on Data Mining Workshops (pp. 440-444). IEEE.Ramanathan, V., and Meyyappan, T., 2019, “Prediction of Individual’s Character in Social Media Using Contextual Semantic Sentiment Analysis”, Mobile Networks and Applications, 24(6):1763-1777.Ruscheinsky, J. R., Lang, M., and Schäfers, W., 2018, “Real estate media sentiment through textual analysis”, Journal of Property Investment & Finance.Shleifer, A., and Summers, L. H.,1990,” The noise trader approach to finance”, Journal of Economic perspectives, 4(2): 19-33.Stein, J. C.,1996,” Rational capital budgeting in an irrational world”, National bureau of economic research, No. w5496.Song, Y., Ji, Q., Du, Y. J., and Geng, J. B., 2019, “The dynamic dependence of fossil energy, investor sentiment and renewable energy stock markets”, Energy Economics, 84: 104564.Su, X., and Li, Y., 2020, “Dynamic sentiment spillovers among crude oil, gold, and Bitcoin markets: Evidence from time and frequency domain analyses”, Plos one, 15(12): e0242515.Tabassum, S., Pereira, F. S., Fernandes, S., and Gama, J., 2018, “Social network analysis: An overview”, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(5):e1256.Vargas, M. R., De Lima, B. S., and Evsukoff, A. G., 2017, “Deep learning for stock market prediction from financial news articles”, In 2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA) (pp. 60-65). IEEE.Vashishtha, S., and Susan, S.,2019, “Fuzzy rule based unsupervised sentiment analysis from social media posts”, Expert Systems with Applications, 138, 112834.Walker, C. B., 2014, “Housing booms and media coverage”, Applied Economics, 46(32):3954-3967.Yao, C. Z., and Li, H. Y., 2020, “Time-varying lead–lag structure between investor sentiment and stock market”, The North American Journal of Economics and Finance, 52: 101148 描述 碩士
國立政治大學
地政學系
108257024資料來源 http://thesis.lib.nccu.edu.tw/record/#G0108257024 資料類型 thesis dc.contributor.advisor 林左裕 zh_TW dc.contributor.author (Authors) 黃瀞誼 zh_TW dc.contributor.author (Authors) Huang, Ching-Yi en_US dc.creator (作者) 黃瀞誼 zh_TW dc.creator (作者) Huang, Ching-Yi en_US dc.date (日期) 2021 en_US dc.date.accessioned 2-Sep-2021 17:34:03 (UTC+8) - dc.date.available 2-Sep-2021 17:34:03 (UTC+8) - dc.date.issued (上傳時間) 2-Sep-2021 17:34:03 (UTC+8) - dc.identifier (Other Identifiers) G0108257024 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/137042 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 地政學系 zh_TW dc.description (描述) 108257024 zh_TW dc.description.abstract (摘要) 本研究以網路討論熱度作為市場需求的參考,主要探討商用不動產市場、股票市場之網路聲量情緒對各市場收益之影響,以向量自我迴歸模型(VAR)分析市場情緒與價格之動態關聯。另考慮到商用不動產市場與股票市場情緒變數蒐集之原始聲量來源眾多,蒐集網站如Facebook、Instagram、PTT、Mobile 01、Dcard、ETtoday、Linetoday…等,惟各網站之屬性不同,像是Facebook、Instagram、PTT、Mobile 01與Dcard多半是自發性討論或針對特定議題進行回覆與留言,為較開放且隨機之言論;ETtoday與Linetoday則是電子新聞報導,其中可能夾雜廣告、宣傳或教育之性質,故本研究將網路聲量進行分類,將來源細分為多半是自發性發言之「網路社群」與具有宣傳、廣告性質之「新聞媒體」等二來源集,分別建構情緒指標,嘗試以兩種不同性質的聲量屬性角度探討商用不動產市場與股票市場情緒與價格之關聯性。實證結果發現,前兩個月至前四個月的商用不動產市場「網路社群」聲量情緒將正向影響當期的商用不動產市場收益;而前兩個月與前三個月的商用不動產市場「新聞媒體」聲量情緒負向影響當期的商用不動產市場收益,顯示網路社群與新聞媒體之討論內容與熱度確實對於商用不動產市場具解釋效果。此外,本研究亦發現前兩個月的股票產市場「新聞媒體」聲量情緒將正向影響當期的商用不動產市場收益,換句話說,股票市場之聲量情緒可以用於預測未來商用不動產市場之發展趨勢,證實股票市場與商用不動產市場間存在情緒外溢效應。透過網路社群或新聞媒體之討論情緒不僅可補足過去單靠總體經濟變數所無法解釋之市場意向,亦提供商用不動產市場一新穎的預測指標。本研究之實證結果可提供政府、投資者或不動產相關從業人員在觀察市場、進行投資決策或政策制定之參考依據。 zh_TW dc.description.abstract (摘要) This research uses the popularity of internet discussions as a reference for market demand, and explores the impact of online sentiment on the price of the commercial real estate market and the stock market, as well as analyzes the dynamic relationship between the sentiment of the market and the revenue of the market with the Vector Auto Regression model. In addition, this research divides the online sentiment into two source sets: " social media" that involve spontaneous discussions and "news media" that potentially involve propaganda and advertising.The empirical results show that the sentiment of the " social media " in the commercial real estate market during last two months to last four months positively affects the current commercial real estate market revenue; while the sentiment of the "news media" in the real estate market during last two months and last three months negatively affects the current commercial real estate market revenue, which also indicates that the content and the popularity of discussions between the internet and the news media do have an explanatory effect on the commercial real estate market. Moreover, this study shows that online sentiment of the "news media" in the stock market during last two months positively affects the current commercial real estate market earnings. In other words, the development trend of the market confirms that there is a spillover effect between the stock market and the commercial real estate market. en_US dc.description.tableofcontents 第一章 緒論 1第一節 研究動機與目的 1第二節 研究方法與範圍 4第三節 研究架構 7第二章 文獻回顧 9第一節 網路聲量與大數據分析 9第二節 投資者情緒與市場收益 12第三節 情緒溢出效應 15第四節 影響不動產市場之總體經濟因素 17第五節 小結 19第三章 研究設計 21第一節 研究設計與模型建立 21第二節 資料說明與變數選取 27第四章 實證分析 41第一節 結構性轉變 41第二節 單根檢定 42第三節 皮爾森相關係數檢定 44第四節 向量自我迴歸模型 45第五章 結論與建議 53第一節 結論 53第二節 建議 55參考文獻 57表 1 情緒指數關鍵字設定表 32表 2 聲量來源分類表 32表 3 變數統整表 35表 4 變數敘述統計表 36表 5 各變數單根檢定結果 43表 6 皮爾森相關係數檢定結果 44表 7 模型一之最適落後期數篩選 46表 8 模型二之最適落後期數篩選 46表 9 商用不動產市場情緒之向量自我迴歸模型結果 51表 10 股票市場情緒之向量自我迴歸模型結果 52圖 1 研究流程圖 7圖 2 Y_A時間趨勢圖 37圖 3 X_COMN時間趨勢圖 37圖 4 X_COMS時間趨勢圖 37圖 5 X_STOCKN時間趨勢圖 38圖 6 X_STOCKS時間趨勢圖 38圖 7 NTD時間趨勢圖 38圖 8 I時間趨勢圖 39圖 9 M2時間趨勢圖 39圖 10 CPI時間趨 39圖 11 Y_A結構性轉變 41 zh_TW dc.format.extent 2233987 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0108257024 en_US dc.subject (關鍵詞) 網路聲量情緒 zh_TW dc.subject (關鍵詞) 社群媒體 zh_TW dc.subject (關鍵詞) 新聞媒體 zh_TW dc.subject (關鍵詞) 商用不動產市場 zh_TW dc.subject (關鍵詞) 向量自我迴歸 zh_TW dc.subject (關鍵詞) Online Sentiment en_US dc.subject (關鍵詞) Social media en_US dc.subject (關鍵詞) News Media en_US dc.subject (關鍵詞) Commercial Real Estate Market en_US dc.subject (關鍵詞) Vector Auto Regression (VAR) en_US dc.title (題名) 應用大數據分析商用不動產市場、股票市場情緒與收益之交叉關聯 zh_TW dc.title (題名) Big Data Analytics: How the Commercial Real Estate and Stock Market’s Sentiment Affects the Commercial Real Estate Investment en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) 一、中文參考文獻王信達,2010,「從兩岸總體經濟環境探討臺北市上海市辦公市場租金影響之實證分析」,淡江大學中國大陸研究所碩士論文。林左裕,2019,「應用網路搜尋行為預測房地產市場」,應用經濟論叢,第105期。林左裕、程于芳,2014,「影響不動產市場之從眾行為與總體經濟因素之研究」,應用經濟論叢,第95期。張曉慈,2010,「影響不動產報酬波動性之總體經濟因素分析」,國立政治大學地政研究所碩士論文。楊奕農,2009,「時間序列分析 經濟與財務上之應用」。頁 99-123、205-235、331-392、395-446,台北,雙葉書廊有限公司。鄧筱蓉,2017,房市泡沫與總體經濟關係,JOURNAL OF HOUSING:26(2).薄有為、鍾懿萍,2011,「辦公大樓租金影響因素之研究-以上海市甲級辦公大樓為例」,『物業管理學會論文集』, 13-22. 二、英文參考文獻Affuso, E., and Lahtinen, K. D., 2019, “Social mediasentiment and market behavior”, Empirical Economics, 57(1):105-127.Agyemang, A., Chowdhury, I., and Balli, F., 2021,“Quantifying Return Spillovers in Global Real EstateMarkets”, Journal of Housing Economics, 101781.Akinsomi, O., Mkhabela, N., and Taderera, M., 2018, “Therole of macro-economic indicators in explaining direct commercial real estate returns: evidence from South Africa”, Journal of Property Research, 35(1):28-52.Baker, M., and Wurgler, J., 2006, “Investor sentiment and the cross‐section of stock returns”, The journal of Finance, 61(4):1645-1680.Baker, M., Wurgler, J., and Yuan, Y., 2012, “Global, local, and contagious investor sentiment”, Journal of financial economics, 104(2):272-287.Beauchamp, N.,2017, “Predicting and interpolating state‐level polls using Twitter textual data”, American Journal of Political Science, 61(2):490-503.Bhuriya, D., Kaushal, G., Sharma, A., and Singh, U., 2017, “Stock market predication using a linear regression”, In 2017 international conference of electronics, communication and aerospace technology (ICECA), (Vol. 2, pp. 510-513). IEEE.Bhuiyan, E. M., and Chowdhury, M., 2020, “Macroeconomic variables and stock market indices: Asymmetric dynamics in the US and Canada”, The Quarterly Review of Economics and Finance, 77:62-74.Carosia, A. E. O., Coelho, G. P., and Silva, A. E. A., 2020, “Analyzing the Brazilian financial market through Portuguese sentiment analysis in social media”, Applied Artificial Intelligence, 34(1):1-19.Checkley, M. S., Higón, D. A., and Alles, H., 2017, “The hasty wisdom of the mob: How market sentiment predicts stock market behavior”, Expert Systems with applications, 77:256-263.Chen, M. C., and K. Patel , 2002 , "The Empirical Analysis of Determination of Housing Prices in the Taipei Area", Taiwan Economic Review, 30(4):563-594.De Long, J. B., Shleifer, A., Summers, L. H., and Waldmann, R. J.,1990,” Noise trader risk in financial markets”, Journal of political Economy, 98(4): 703-738.Devos, E., Ong, S. E., Spieler, A. C., and Tsang, D., 2013,” REIT institutional ownership dynamics and the financial crisis”, The journal of real estate finance and economics, 47(2): 266-288.Dietzel, M. A., 2016, “Sentiment-based predictions of housing market turning points with Google trends”, International Journal of Housing Markets and Analysis.Freybote, J., and Seagraves, P.A., 2017, “Heterogeneous investor sentiment and institutional real estate investments”, Real Estate Economics, 45(1):154-176.Freybote, J., and Seagraves, P., 2018, “The impact of investor sentiment on commercial real estate market liquidity”, Journal of Real Estate Research, 40(4):597-628.Filis, G.,2010, ”Macro economy, stock market and oil prices: do meaningful relationships exist among their cyclical fluctuations? ” Energy Economics, 32(4): 877-886.Gallimore, P., and Gray, A., 2002, “The role of investor sentiment in property investment decisions”, Journal of Property Research, 19(2):111-120.Giordano, G., and Primerano, I., 2018, “The use of network analysis to handle semantic differential data”, Quality & Quantity, 52(3):1173-1192.González-Sánchez, M., and Morales de Vega, M. E., 2021, “Influence of Bloomberg’s Investor Sentiment Index: Evidence from European Union Financial Sector. Mathematics”,9(4):297.Hatfield, E., Cacioppo, J. T., and Rapson, R. L., 1993, “Emotional contagion”, Current directions in psychological science, 2(3):96-100.Hausler, J., Ruscheinsky, J., and Lang, M., 2018, “News-based sentiment analysis in real estate: a machine learning approach”, Journal of Property Research, 35(4):344-371.Heiden, S., Klein, C., and Zwergel, B., 2013, “Beyond fundamentals: investor sentiment and exchange rate forecasting”, European Financial Management, 19(3):558-578.Heinig, S., and Nanda, A., 2018, “Measuring sentiment in real estate–a comparison study”, Journal of Property Investment Finance.Heston, S. L., and Sinha, N. R., 2017, “News vs. sentiment: Predicting stock returns from news stories”, Financial Analysts Journal, 73(3):67-83.Hoskins, N., Higgins, D., and Cardew, R., 2004, “Macroeconomic variables and real estate returns: an international comparison”, The Appraisal Journal, 72(2):163.Hudson, Y., and Green, C. J., 2015, “Is investor sentiment contagious? International sentiment and UK equity returns”, Journal of Behavioral and Experimental Finance, 5:46-59.Hurvich, C. M., Tsai, and C. L., 1989, "Regression and time series model selection in small samples", Biometrika, 76(2):297-307.Kalyani, J., Bharathi, P., and Jyothi, P., 2016, “Stock trend prediction using news sentiment analysis”, arXiv preprint arXiv:1607.01958.Ke, Q., and Sieracki, K, 2019, “Exploring sentiment-driven trading behaviour of different types of investors in the London office market”, Journal of Property Research, 36(2):186-205.Lin, C. Y., Rahman, H., and Yung, K., 2009, “Investor sentiment and REIT returns”, The journal of real estate finance and economics, 39(4):450.Ling, D. C., Naranjo, A., and Scheick, B., 2014, “Investor sentiment, limits to arbitrage and private market returns”, Real Estate Economics, 42(3):531-577.Mehta, P., and Pandya, S., 2020, "A review on sentiment analysis methodologies, practices and applications", International Journal of Scientific and Technology Research, 9(2):601-609.Mehta, P., Pandya, S., Kotecha, K., 2021, “Harvesting social media sentiment analysis to enhance stock market prediction using deep learning”, PeerJ Computer Science, 7: e476.Olanrele, O. O., Fateye, O. B., Adegunle, T. O., Ajayi, C. A., Said, R., and Baaki, K., 2020, “Causal effects of macroeconomic predictors on real estate investment trust’s (REIT’s) performance in Nigeria”, Pacific Rim Property Research Journal, 26(2):149-171.Pagan, A. R., and Wickens, M. R.,1989, “A survey of some recent econometric methods”, The Economic Journal, 99(398): 962-1025.Porshnev, A., Redkin, I., and Shevchenko, A., 2013, “Machine learning in prediction of stock market indicators based on historical data and data from twitter sentiment analysis”, In 2013 IEEE 13th International Conference on Data Mining Workshops (pp. 440-444). IEEE.Ramanathan, V., and Meyyappan, T., 2019, “Prediction of Individual’s Character in Social Media Using Contextual Semantic Sentiment Analysis”, Mobile Networks and Applications, 24(6):1763-1777.Ruscheinsky, J. R., Lang, M., and Schäfers, W., 2018, “Real estate media sentiment through textual analysis”, Journal of Property Investment & Finance.Shleifer, A., and Summers, L. H.,1990,” The noise trader approach to finance”, Journal of Economic perspectives, 4(2): 19-33.Stein, J. C.,1996,” Rational capital budgeting in an irrational world”, National bureau of economic research, No. w5496.Song, Y., Ji, Q., Du, Y. J., and Geng, J. B., 2019, “The dynamic dependence of fossil energy, investor sentiment and renewable energy stock markets”, Energy Economics, 84: 104564.Su, X., and Li, Y., 2020, “Dynamic sentiment spillovers among crude oil, gold, and Bitcoin markets: Evidence from time and frequency domain analyses”, Plos one, 15(12): e0242515.Tabassum, S., Pereira, F. S., Fernandes, S., and Gama, J., 2018, “Social network analysis: An overview”, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(5):e1256.Vargas, M. R., De Lima, B. S., and Evsukoff, A. G., 2017, “Deep learning for stock market prediction from financial news articles”, In 2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA) (pp. 60-65). IEEE.Vashishtha, S., and Susan, S.,2019, “Fuzzy rule based unsupervised sentiment analysis from social media posts”, Expert Systems with Applications, 138, 112834.Walker, C. B., 2014, “Housing booms and media coverage”, Applied Economics, 46(32):3954-3967.Yao, C. Z., and Li, H. Y., 2020, “Time-varying lead–lag structure between investor sentiment and stock market”, The North American Journal of Economics and Finance, 52: 101148 zh_TW dc.identifier.doi (DOI) 10.6814/NCCU202101478 en_US