學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

題名 大數據分析於GPU平台之效能評估:以影像辨識為例
Evaluation of Big Data Analytical Performance on GPU Platforms: Computer Vision as an Example
作者 曾豐源
Tseng, Feng-Yuan
貢獻者 胡毓忠
Hu, Yuh-Jong
曾豐源
Tseng, Feng-Yuan
關鍵詞 大數據分析
深度學習
ImageNet
NVIDIA
GPU
NVIDIA DGX A100
NVIDIA DGX Station
Big Data Analysis
Deep Learning
ImageNet
NVIDIA
GPU
NVIDIA DGX A100
NVIDIA DGX Station
日期 2021
上傳時間 2-Sep-2021 18:17:33 (UTC+8)
摘要 本研究以ImageNet Large Scale Visual Recognition Challenge (ILSVRC)作為資料集,結合ResNet50深度學習模型,從企業角度為出發點,比較不同的GPU運算環境在AI 大數據分析流程中,探討硬體效能及性價比。本研究以政大電算中心私有雲NVIDIA DGX A100、NVIDIA DGX Station,以及Desktop Computer三種GPU運算環境進行效能測試,並且利用系統監控技術,取得各流程中硬體資源的使用情況,並分析總體效能。因此實驗結果顯示,NVIDIA DGX A100在訓練階段能夠減少模型訓練時間,而在上線階段Desktop Computer其性價比優於NVIDIA DGX A100和NVIDIA DGX Station。
This research adopts the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as data set, combined with the ResNet50 deep learning model to compare the performance and cost-effectiveness of a hardware under different GPU computing environments applied throughout the AI big data analysis process from an enterprise’s perspective. Performance tests are conducted under three different GPU computing environments, including NVIDIA DGX A100 and NVIDIA DGX Station, hosted as two seperate private clouds owned by the NCCU Computer Center, and the typical desktop computer. We use the system monitoring technology to obtain the usage of hardware resources in each analysis process and to examine the overall performance. The results show that NVIDIA DGX A100 can reduce the time needed for model training during training phase, while Desktop Computer is more cost-effective than NVIDIA DGX A100 and NVIDIA DGX Station during the online phase.
參考文獻 [1] Nvidia dali documentation. https://docs.nvidia.com/deeplearning/dali/user-guide/docs/. [Online; accessed 30May2021].
[2] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., and FeiFei, L. Imagenet: A largescale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (2009), Ieee, pp. 248–255.
[3] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (2016), pp. 770–778.
[4] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems 25 (2012), 1097–1105.
[5] Lawrence, J., Malmsten, J., Rybka, A., et al. Comparing tensorflow deep learning performance using cpus, gpus, local pcs and cloud.
[6] Lin, C.Y., Pai, H.Y., and Chou, J. Comparison between baremetal, container and vm using tensorflow image classification benchmarks for deep learning cloud platform. In CLOSER (2018), pp. 376–383.
[7] Peter Mattson, C. C., and Cody Coleman, e. a. Mlperf training benchmark, 2020.
[8] Reddi, V. J., Cheng, C., and David Kanter, e. a. Mlperf inference benchmark, 2020.
[9] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. Going deeper with convolutions, 2014.
[10] Wikipedia contributors. Huang’s law — Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Huang%27s_law&oldid=996423603, 2020. [Online; accessed 27January2021].
[11] Wikipedia contributors. Imagenet — Wikipedia, the free encyclopedia, 2021. [Online; accessed 26May2021].
[12] Wikipedia contributors. Kubernetes — Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Kubernetes&oldid=1024839217, 2021. [Online; accessed 28May2021].
描述 碩士
國立政治大學
資訊科學系碩士在職專班
107971025
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0107971025
資料類型 thesis
dc.contributor.advisor 胡毓忠zh_TW
dc.contributor.advisor Hu, Yuh-Jongen_US
dc.contributor.author (Authors) 曾豐源zh_TW
dc.contributor.author (Authors) Tseng, Feng-Yuanen_US
dc.creator (作者) 曾豐源zh_TW
dc.creator (作者) Tseng, Feng-Yuanen_US
dc.date (日期) 2021en_US
dc.date.accessioned 2-Sep-2021 18:17:33 (UTC+8)-
dc.date.available 2-Sep-2021 18:17:33 (UTC+8)-
dc.date.issued (上傳時間) 2-Sep-2021 18:17:33 (UTC+8)-
dc.identifier (Other Identifiers) G0107971025en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/137165-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學系碩士在職專班zh_TW
dc.description (描述) 107971025zh_TW
dc.description.abstract (摘要) 本研究以ImageNet Large Scale Visual Recognition Challenge (ILSVRC)作為資料集,結合ResNet50深度學習模型,從企業角度為出發點,比較不同的GPU運算環境在AI 大數據分析流程中,探討硬體效能及性價比。本研究以政大電算中心私有雲NVIDIA DGX A100、NVIDIA DGX Station,以及Desktop Computer三種GPU運算環境進行效能測試,並且利用系統監控技術,取得各流程中硬體資源的使用情況,並分析總體效能。因此實驗結果顯示,NVIDIA DGX A100在訓練階段能夠減少模型訓練時間,而在上線階段Desktop Computer其性價比優於NVIDIA DGX A100和NVIDIA DGX Station。zh_TW
dc.description.abstract (摘要) This research adopts the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as data set, combined with the ResNet50 deep learning model to compare the performance and cost-effectiveness of a hardware under different GPU computing environments applied throughout the AI big data analysis process from an enterprise’s perspective. Performance tests are conducted under three different GPU computing environments, including NVIDIA DGX A100 and NVIDIA DGX Station, hosted as two seperate private clouds owned by the NCCU Computer Center, and the typical desktop computer. We use the system monitoring technology to obtain the usage of hardware resources in each analysis process and to examine the overall performance. The results show that NVIDIA DGX A100 can reduce the time needed for model training during training phase, while Desktop Computer is more cost-effective than NVIDIA DGX A100 and NVIDIA DGX Station during the online phase.en_US
dc.description.tableofcontents 誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 vii
1 導論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 論文架構 3
2 研究背景 4
2.1 AI大數據分析流程 4
2.2 ImageNet數據集 6
2.3 ResNet網路模型 6
2.4 政大NVIDIA GPU運算環境架構 7
3 相關研究 11
3.1 模型訓練基準評估研究案例 11
3.2 模型推理基準評估研究案例 12
4 研究構架與方法 14
4.1 實驗資料集 14
4.2 選擇網路模型 15
4.3 各GPU 運算環境之配置 16
4.4 訓練階段實驗方法 16
4.5 上線階段實驗方法 18
5 實驗結果 20
5.1 訓練階段之實驗結果 20
5.2 上線階段之實驗結果 26
5.3 總體效能與性價比分析 27
6 結論與未來展望 30
6.1 結論 30
6.2 未來展望 30
參考文獻 31
zh_TW
dc.format.extent 2284020 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0107971025en_US
dc.subject (關鍵詞) 大數據分析zh_TW
dc.subject (關鍵詞) 深度學習zh_TW
dc.subject (關鍵詞) ImageNetzh_TW
dc.subject (關鍵詞) NVIDIAzh_TW
dc.subject (關鍵詞) GPUzh_TW
dc.subject (關鍵詞) NVIDIA DGX A100zh_TW
dc.subject (關鍵詞) NVIDIA DGX Stationzh_TW
dc.subject (關鍵詞) Big Data Analysisen_US
dc.subject (關鍵詞) Deep Learningen_US
dc.subject (關鍵詞) ImageNeten_US
dc.subject (關鍵詞) NVIDIAen_US
dc.subject (關鍵詞) GPUen_US
dc.subject (關鍵詞) NVIDIA DGX A100en_US
dc.subject (關鍵詞) NVIDIA DGX Stationen_US
dc.title (題名) 大數據分析於GPU平台之效能評估:以影像辨識為例zh_TW
dc.title (題名) Evaluation of Big Data Analytical Performance on GPU Platforms: Computer Vision as an Exampleen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] Nvidia dali documentation. https://docs.nvidia.com/deeplearning/dali/user-guide/docs/. [Online; accessed 30May2021].
[2] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., and FeiFei, L. Imagenet: A largescale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (2009), Ieee, pp. 248–255.
[3] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (2016), pp. 770–778.
[4] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems 25 (2012), 1097–1105.
[5] Lawrence, J., Malmsten, J., Rybka, A., et al. Comparing tensorflow deep learning performance using cpus, gpus, local pcs and cloud.
[6] Lin, C.Y., Pai, H.Y., and Chou, J. Comparison between baremetal, container and vm using tensorflow image classification benchmarks for deep learning cloud platform. In CLOSER (2018), pp. 376–383.
[7] Peter Mattson, C. C., and Cody Coleman, e. a. Mlperf training benchmark, 2020.
[8] Reddi, V. J., Cheng, C., and David Kanter, e. a. Mlperf inference benchmark, 2020.
[9] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. Going deeper with convolutions, 2014.
[10] Wikipedia contributors. Huang’s law — Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Huang%27s_law&oldid=996423603, 2020. [Online; accessed 27January2021].
[11] Wikipedia contributors. Imagenet — Wikipedia, the free encyclopedia, 2021. [Online; accessed 26May2021].
[12] Wikipedia contributors. Kubernetes — Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Kubernetes&oldid=1024839217, 2021. [Online; accessed 28May2021].
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU202101203en_US