Publications-Proceedings
Article View/Open
Publication Export
Google ScholarTM
NCCU Library
Citation Infomation
-
Loading...Loading...
Related Publications in TAIR
Title | Multi-label classification of Chinese judicial documents based on BERT |
Creator | 劉昭麟 Liu, Chao-Lin Dai, Mian |
Contributor | 資科系 |
Key Words | Natural language processing ; Multi-label classification ; BERT |
Date | 2020-12 |
Date Issued | 22-Sep-2021 10:40:24 (UTC+8) |
Summary | Judicial decisions are an important part of modern democratic societies. In this paper, I present results of multi-label classification of Chinese judicial documents. The experiments employ the same corpus that was used in Chinese AI & Law Challenge(CAIL) 2018. |
Relation | Proceedings of the 2020 IEEE International Conference on Big Data, IEEE, pp.1866-1867 |
Type | conference |
DOI | https://doi.org/10.1109/BigData50022.2020.9377969 |
dc.contributor | 資科系 | - |
dc.creator (作者) | 劉昭麟 | - |
dc.creator (作者) | Liu, Chao-Lin | - |
dc.creator (作者) | Dai, Mian | - |
dc.date (日期) | 2020-12 | - |
dc.date.accessioned | 22-Sep-2021 10:40:24 (UTC+8) | - |
dc.date.available | 22-Sep-2021 10:40:24 (UTC+8) | - |
dc.date.issued (上傳時間) | 22-Sep-2021 10:40:24 (UTC+8) | - |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/137223 | - |
dc.description.abstract (摘要) | Judicial decisions are an important part of modern democratic societies. In this paper, I present results of multi-label classification of Chinese judicial documents. The experiments employ the same corpus that was used in Chinese AI & Law Challenge(CAIL) 2018. | - |
dc.format.extent | 917551 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.relation (關聯) | Proceedings of the 2020 IEEE International Conference on Big Data, IEEE, pp.1866-1867 | - |
dc.subject (關鍵詞) | Natural language processing ; Multi-label classification ; BERT | - |
dc.title (題名) | Multi-label classification of Chinese judicial documents based on BERT | - |
dc.type (資料類型) | conference | - |
dc.identifier.doi (DOI) | 10.1109/BigData50022.2020.9377969 | - |
dc.doi.uri (DOI) | https://doi.org/10.1109/BigData50022.2020.9377969 | - |