學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

題名 漢諾圖上的哈密頓路徑
Hamiltonian Walks on the Hanoi Graph
作者 呂存策
CUNCE, LYU
貢獻者 陳隆奇
Lung­-Chi Chen
呂存策
LYU CUNCE
關鍵詞 漢諾圖
哈密頓路徑
漸進表現
Hanoi graph
Hamiltonian walk
Asymptotic behaviour
日期 2021
上傳時間 10-Feb-2022 13:06:31 (UTC+8)
摘要 本文給出了 n 階 2 維漢諾圖(又稱漢諾塔圖、河內圖)上哈密頓路徑的數量,其漸進表現是 h(n) ∼ 25×16^n/624 。這類漢諾圖上的哈密頓路徑總數量與起點在最上面的顶點的哈密頓路徑數量的對數的比值漸進至 2。同時,當這類漢諾圖上三個方向的平行邊分別被 x, y, z 這三個數
加權後,我們也推導出了它們的哈密頓路徑的加權和,其漸進表現為h′(n) ∼(25w*16^n(xyz)^(3n−1))/(16*27*13)其中 w =(x + y + z)^2/(xyz)。
We’ve derived the number of Hamiltonian walks on the two­dimensional Hanoi graph at stage n, whose asymptotic behaviour is given by h(n) ∼ 25×16^n/624 .
And the asymptotic behaviour the logarithmic ratio of the number of Hamiltonian walks on these Hanoi graphs with that one end at the topmost vertex is given by 2. When the parallel edges in the three directions on these Hanoi graphs are weighted by three numbers, x, y, z, the weighted sum of their Hamiltonian paths is also derived by us, and the asymptotic behaviour of it is given by
h′(n) ∼(25w*16^n(xyz)^(3n−1))/(16*27*13) in which w =(x + y + z)^2/(xyz).
參考文獻 [1] RM Bradley. Analytical enumeration of hamiltonian walks on a fractal. Journal of Physics A: Mathematical and General, 22(1):L19, 1989.
[2] Shu­Chiuan Chang and Lung­Chi Chen. Structure of spanning trees on the two­dimensional sierpinski gasket, 2008.
[3] Shu­Chiuan Chang and Lung­Chi Chen. Hamiltonian paths on the sierpinski gasket, 2009.
[4] Sunčica Elezović­Hadžić, Dušanka Marčetić, and Slobodan Maletić. Scaling of hamiltonian walks on fractal lattices. Physical Review E, 76(1):011107, 2007.
[5] Andreas M Hinz, Sandi Klavžar, Uroš Milutinović, and Ciril Petr. The Tower of Hanoi­myths and maths. Springer, 2013.
[6] Wilfried Imrich, Sandi Klavzar, and Douglas F Rall. Topics in graph theory: Graphs and their Cartesian product. CRC Press, 2008.
[7] Sandi Klavžar and Uroš Milutinović. Graphs s (n, k) and a variant of the tower of hanoi problem. Czechoslovak Mathematical Journal, 47(1):95–104, 1997.
[8] Dušanka Lekić and Sunčica Elezović­Hadžić. Semi­flexible compact polymers on fractal lattices. Physica A: Statistical Mechanics and its Applications, 390(11):1941–1952, 2011.
描述 碩士
國立政治大學
應用數學系
104751019
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0104751019
資料類型 thesis
dc.contributor.advisor 陳隆奇zh_TW
dc.contributor.advisor Lung­-Chi Chenen_US
dc.contributor.author (Authors) 呂存策zh_TW
dc.contributor.author (Authors) LYU CUNCEen_US
dc.creator (作者) 呂存策zh_TW
dc.creator (作者) CUNCE, LYUen_US
dc.date (日期) 2021en_US
dc.date.accessioned 10-Feb-2022 13:06:31 (UTC+8)-
dc.date.available 10-Feb-2022 13:06:31 (UTC+8)-
dc.date.issued (上傳時間) 10-Feb-2022 13:06:31 (UTC+8)-
dc.identifier (Other Identifiers) G0104751019en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/138940-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學系zh_TW
dc.description (描述) 104751019zh_TW
dc.description.abstract (摘要) 本文給出了 n 階 2 維漢諾圖(又稱漢諾塔圖、河內圖)上哈密頓路徑的數量,其漸進表現是 h(n) ∼ 25×16^n/624 。這類漢諾圖上的哈密頓路徑總數量與起點在最上面的顶點的哈密頓路徑數量的對數的比值漸進至 2。同時,當這類漢諾圖上三個方向的平行邊分別被 x, y, z 這三個數
加權後,我們也推導出了它們的哈密頓路徑的加權和,其漸進表現為h′(n) ∼(25w*16^n(xyz)^(3n−1))/(16*27*13)其中 w =(x + y + z)^2/(xyz)。
zh_TW
dc.description.abstract (摘要) We’ve derived the number of Hamiltonian walks on the two­dimensional Hanoi graph at stage n, whose asymptotic behaviour is given by h(n) ∼ 25×16^n/624 .
And the asymptotic behaviour the logarithmic ratio of the number of Hamiltonian walks on these Hanoi graphs with that one end at the topmost vertex is given by 2. When the parallel edges in the three directions on these Hanoi graphs are weighted by three numbers, x, y, z, the weighted sum of their Hamiltonian paths is also derived by us, and the asymptotic behaviour of it is given by
h′(n) ∼(25w*16^n(xyz)^(3n−1))/(16*27*13) in which w =(x + y + z)^2/(xyz).
en_US
dc.description.tableofcontents 致謝 i
中文摘要 ii
Abstract iii
Contents iv
List of Figures v
1 Introduction 1
1.1 Hanoi graphs 1
1.2 Hamiltonian walk 2
2 Hamiltonian paths in weightless Hanoi graph 4
2.1 Preliminaries 4
2.2 Building recursions to count the number of Hamiltonian walks 6
2.3 Number of Hamiltonian walks 8
3 Hamiltonian paths in weighted Hanoi graph 11
3.1 Preliminaries 11
3.2 Building recursions to calculate the weighted sum of Hamiltonian walks 16
3.3 Get the weighted sum 22
Bibliography 29
zh_TW
dc.format.extent 507539 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0104751019en_US
dc.subject (關鍵詞) 漢諾圖zh_TW
dc.subject (關鍵詞) 哈密頓路徑zh_TW
dc.subject (關鍵詞) 漸進表現zh_TW
dc.subject (關鍵詞) Hanoi graphen_US
dc.subject (關鍵詞) Hamiltonian walken_US
dc.subject (關鍵詞) Asymptotic behaviouren_US
dc.title (題名) 漢諾圖上的哈密頓路徑zh_TW
dc.title (題名) Hamiltonian Walks on the Hanoi Graphen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] RM Bradley. Analytical enumeration of hamiltonian walks on a fractal. Journal of Physics A: Mathematical and General, 22(1):L19, 1989.
[2] Shu­Chiuan Chang and Lung­Chi Chen. Structure of spanning trees on the two­dimensional sierpinski gasket, 2008.
[3] Shu­Chiuan Chang and Lung­Chi Chen. Hamiltonian paths on the sierpinski gasket, 2009.
[4] Sunčica Elezović­Hadžić, Dušanka Marčetić, and Slobodan Maletić. Scaling of hamiltonian walks on fractal lattices. Physical Review E, 76(1):011107, 2007.
[5] Andreas M Hinz, Sandi Klavžar, Uroš Milutinović, and Ciril Petr. The Tower of Hanoi­myths and maths. Springer, 2013.
[6] Wilfried Imrich, Sandi Klavzar, and Douglas F Rall. Topics in graph theory: Graphs and their Cartesian product. CRC Press, 2008.
[7] Sandi Klavžar and Uroš Milutinović. Graphs s (n, k) and a variant of the tower of hanoi problem. Czechoslovak Mathematical Journal, 47(1):95–104, 1997.
[8] Dušanka Lekić and Sunčica Elezović­Hadžić. Semi­flexible compact polymers on fractal lattices. Physica A: Statistical Mechanics and its Applications, 390(11):1941–1952, 2011.
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU202101772en_US