Publications-Periodical Articles

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 Online Mining Maximal Frequent Structures in Continuous Landmark Melody Streams
作者 李素瑛;沈錳坤
Li, Hua-Fu ;
     Lee, Suh-Yin ;
     Shan, Man-Kwan
關鍵詞 Machine learning;
     Data mining;
     Landmark melody stream;
     Maximal melody structure;
     Online algorithm
日期 2005-11
上傳時間 16-Dec-2008 16:47:54 (UTC+8)
摘要 In this paper, we address the problem of online mining maximal frequent structures (Type I & II melody structures) in unbounded, continuous landmark melody streams. An efficient algorithm, called MMSLMS (Maximal Melody Structures of Landmark Melody Streams), is developed for online incremental mining of maximal frequent melody substructures in one scan of the continuous melody streams. In MMSLMS, a space-efficient scheme, called CMB (Chord-set Memory Border), is proposed to constrain the upper-bound of space requirement of maximal frequent melody structures in such a streaming environment. Theoretical analysis and experimental study show that our algorithm is efficient and scalable for mining the set of all maximal melody structures in a landmark melody stream.
關聯 Pattern Recognition Letters, 26(11), 1658-1674
資料類型 article
DOI http://dx.doi.org/10.1016/j.patrec.2005.01.016
dc.creator (作者) 李素瑛;沈錳坤zh_TW
dc.creator (作者) Li, Hua-Fu ;
     Lee, Suh-Yin ;
     Shan, Man-Kwan
-
dc.date (日期) 2005-11en_US
dc.date.accessioned 16-Dec-2008 16:47:54 (UTC+8)-
dc.date.available 16-Dec-2008 16:47:54 (UTC+8)-
dc.date.issued (上傳時間) 16-Dec-2008 16:47:54 (UTC+8)-
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/15013-
dc.description.abstract (摘要) In this paper, we address the problem of online mining maximal frequent structures (Type I & II melody structures) in unbounded, continuous landmark melody streams. An efficient algorithm, called MMSLMS (Maximal Melody Structures of Landmark Melody Streams), is developed for online incremental mining of maximal frequent melody substructures in one scan of the continuous melody streams. In MMSLMS, a space-efficient scheme, called CMB (Chord-set Memory Border), is proposed to constrain the upper-bound of space requirement of maximal frequent melody structures in such a streaming environment. Theoretical analysis and experimental study show that our algorithm is efficient and scalable for mining the set of all maximal melody structures in a landmark melody stream.-
dc.format application/en_US
dc.language enen_US
dc.language en-USen_US
dc.language.iso en_US-
dc.relation (關聯) Pattern Recognition Letters, 26(11), 1658-1674en_US
dc.subject (關鍵詞) Machine learning;
     Data mining;
     Landmark melody stream;
     Maximal melody structure;
     Online algorithm
-
dc.title (題名) Online Mining Maximal Frequent Structures in Continuous Landmark Melody Streamsen_US
dc.type (資料類型) articleen
dc.identifier.doi (DOI) 10.1016/j.patrec.2005.01.016en_US
dc.doi.uri (DOI) http://dx.doi.org/10.1016/j.patrec.2005.01.016en_US