Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 綠色閉迴路供應鏈之多目標穩健最佳化決策模式
A multi-objective robust optimization model for green closed-loop supply chain network design
作者 方怡文
Fang, I-Wen
貢獻者 林我聰
Lin, Woo-Tsong
方怡文
Fang, I-Wen
關鍵詞 閉迴路供應鏈
多目標混合整數規劃
穩健最佳化
Closed-loop supply chain
Multi-objective mixed integer programming model
Robust optimization
日期 2022
上傳時間 2-May-2022 15:00:26 (UTC+8)
摘要 近年環境保護、循環經濟、企業社會責任等議題受到強烈關注,綠色閉迴路供應鏈的相關研究已成為重要課題。企業一方面面對環境議題、法規規範等,另一方面面對競爭激烈經營生態,企業如何有效提升產品或服務的品質,快速回應市場需求,並促成資源循環再利用,將是企業維持競爭力且永續經營的關鍵。
從相關研究文獻中,可發現閉迴路供應鏈模式中,主要多以經濟與環境指標為目標函數,較少考量其他績效評估指標。為補足上述研究缺口,本研究在閉迴路供應鏈網路架構下,考量不確定性,以多目標混合整數規劃方法,建立同時考量經濟因素、環境因素與品質因素之綠色閉迴路供應鏈多目標資源配置決策模式,以尋求利潤最大化、清潔生產最佳化、供應鏈品質最佳化為目標。針對不確定性因素,本研究以情境為基礎的穩健最佳化方法,在綜合考量不同情境下,求得一穩健最佳解。
本研究透過真實產業案例評估數量模式之可行性,面對環境之不確定性與多元的決策目標,可透過此模式進行最佳化資源配置評估,作為企業決策訂定之參考依據。本研究所提出綠色閉迴路供應鏈之多目標穩健最佳化決策模式相關研究成果,不僅可作為閉迴路供應鏈相關學術領域研究之參考,在實務上,亦可引導企業建立綠色閉迴路供應鏈資源配置決策模式,以利企業在複雜多變的經營環境,有效訂定較佳決策,協助企業取得較佳獲利能力與競爭優勢。
In order to keep a company’s competitive capability, effective integrated management of the supply chain are important recently. Due to the topics such as the environmental issues, the governments’ legislation, natural resource limitation and circular economy having got consumers’s awareness, the related researches of the closed-loop supply chain which integrate the forward and reverse supply chain are increasingly growing. Companies not only have to meet the environmental regulations, but also have to sustain high quality of the supply chain operation as a means to stay competitive advantage and profit capability.
This study proposes a multi-objective mixed integer programming model for an integrated green closed-loop supply chain network designed to maximize profit, amicable production level (environmentally friendly materials and clean technology usage), and quality level. A scenario‐based robust optimization method is used to deal with uncertain parameters such as the demand of new products, the return rates of returned products and the sale prices of remanufactured products.
The proposed model is applied to a real industry case example of a manufacturing company to illustrate the applicability of the proposed model. The result shows a robust optimal resource allocation solution that considers multiple scenarios. This study can be a reference for closed‐loop supply chain related academic research and also can be used to guide the development of a green closed‐loop supply chain model for better decision making.
參考文獻 參考文獻
Ageron, B., Gunasekaran, A., and Spalanzani, A., “Sustainable supply management: An empirical study,” International Journal of Production Economics, Vol. 140, No. 1, 2012, pp. 168-182.
Al Jadaan, O., Rao, C.R., and Rajamani, L., Parametric study to enhance genetic algorithm performance, using ranked based roulette wheel selection method, InSciT, Merida, Spain, 2006, pp.274-278.
Almaraj, I.I., Trafalis, T.B., “A robust optimization approach in a multi-objective closed-loop supply chain model under imperfect quality production,” Annals of Operations Research, 2021. https://doi.org/10.1007/s10479-021-04286-8.
Altmann, M. and Bogaschewsky, R., “An environmentally conscious robust closed-loop supply chain design,” Journal of Business Economics, Vol. 84, No. 5, 2014, pp. 613-637.
Amin, S. H. and Zhang, G., “A three-stage model for closed-loop supply chain configuration under uncertainty,” International Journal of Production Research, Vol. 51, No. 5, 2013a, pp.1405–1425.
Amin, S. H. and Zhang, G., “A multi-objective facility location model for closed-loop supply chain network under uncertain demand and return,” Applied Mathematical Modelling, Vol.37, No.6, 2013b, pp.4165-4176.
Ansari, Z.N. and Qureshi, M.N., “Sustainability in supply chain management: An overview,” The IUP Journal of Supply Chain Management, Vol. 12, 2015, pp.24-46.
Atabaki, M. S., Mohammadi, M., and Naderi, B., “New robust optimization models for closed-loop supply chain of durable products: Towards a circular economy,” Computers & industrial engineering, Vol.146, 2020, pp.106520.
Bansal, P. and Roth, K., “Why companies go green: a model of ecological responsiveness,” Academy of Management Journal, Vol. 43, No. 4, 2000, pp.717-736.
Battini, D., Bogataj, M., and Choudhary, A., “Closed loop supply chain (CLSC): Economics, modelling, management and control,” International Journal of Production Economics, Vol. 183, Part B, 2017, pp.319–321.
Beamon, B.M., “Designing the green supply chain,” Logistics Information Management, Vol. 12, No. 4, 1999, pp. 332-342.
Bottani, E., Montanari, R., Rinaldi, M., and Vignali, G., “Modeling and multi-objective optimization of closed loop supply chains: A case study,” Computers & Industrial Engineering, Vol. 87, 2015, pp.328-342.
Cardoso, S. R., Barbosa-Póvoa, A. P. F. D., and Relvas, S., “Design and planning of supply chains with integration of reverse logistics activities under demand uncertainty,” European Journal of Operational Research, Vol. 226, No. 3, 2013, pp.436-451.
Castillo-Villara, K. K., Smithb, N. R., and Simonton, J. L., “The impact of the cost of quality on serial supply-chain network design,” International Journal of Production Research, Vol. 50, No. 19, 2012, pp.5544-5566.
Chankong, V. and Haimes, Y. Y., “Optimization-based methods for multiobjective decisionmaking-An overview,” Large Scale Systems In Information And Decision Technologies, Vol.5, No.1, 1983, pp.1–33.
Chen, Z. and Andresen, S., “A multiobjective optimization model of production-sourcing for sustainable supply chain with consideration of social, environmental, and economic factors,” Mathematical Problems in Engineering, Vol. 2014, 2014, pp.1-11.
Das, K. and Rao Posinasetti, N., “Addressing environmental concerns in closed loop supply chain design and planning,” International Journal of Production Economics, Vol. 163, 2015, pp.34-47.
Deb, K., Pratap, A., Agerwal, S., and Meyarivan, T., “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, Vol. 6, 2002, pp.182–197.
El-Sayed, M., Afia, N., and El-Kharbotly, A., “A stochastic model for forward–reverse logistics network design under risk,” Computers & Industrial Engineering, Vol. 58, No. 3, 2010, pp.423–431.
Fleischmann, M., Bloemhof-Ruwaard, J. M., Dekker, R., Van Der Laan, E., Van Nunen, J. A. E. E., and Van Wassenhove, L. N. "Quantitative models for reverse logistics: A review," European Journal of Operational Research ,Vol.103,No.1,1997, pp. 1-17.
Fleischmann, M., Beullens, P., Bloemhof-Ruwaard, J., and Van Wassenhove, L., "The impact of product recovery on logistics network design," Production and Operations Management, Vol. 10, No. 2, 2001, pp.156-173.
Franca, R. B., Jones, E. C., Richards, C. N., and Carlson, J. P., “Multi-objective stochastic supply chain modeling to evaluate tradeoffs between profit and quality,” International Journal Production Economics, Vol. 127, No. 2, 2010, pp.292-299.
Garg, K., Kannan, D., Diabat, A., and Jha, P. C., “A multi-criteria optimization approach to manage environmental issues in closed loop supply chain network design,” Journal of Cleaner Production, Vol. 100, 2015, pp.297-314.
Govindan, K., Soleimani, H., and Kannan, D., “Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future,” European Journal of Operational Research, Vol. 240, No. 3, 2015, pp.603–626.
Guide, V. D. R., Jr. and Van Wassenhove , L. N., “The evolution of closed-loop supply chain research, Operations Research, Vol. 57, No. 1, 2009, pp.10-18.
Guide, V. D. R., Jayaraman, V., and Linton, J. D., “Building contingency planning for closed-loop supply chains with product recovery,” Journal of Operations Management,Vol. 21, No. 3, 2003, pp.259-279.
Guiffrida, A.L., Datta, P., El Saadany, A., Jaber, M., and Bonney, M.,. “Environmental performance measures for supply chains,” Management Research Review, Vol. 34, No. 11, 2011, pp.1202-1221.
Haimes, Y. Y., Lasdon, L. S., and Wismer, D. A., “On a bicriterion formulation of the problems of integrated system identification and system optimization,” IEEE Transactions on Systems Man and Cybernetics, Vol.1, 1971, pp.296-297.
Hatefi and Jolai, “Robust and reliable forward–reverse logistics network design under demand uncertainty and facility disruptions,” Applied Mathematical modelling, Vol.38, No.9-10, 2014, pp.2630-2647.
Hervani, A.A., Helms, M.M., and Sarkis, J., “Performance measurement for green supply chain management,” Benchmarking: An International Journal, Vol.12, No. 4 , 2005, pp.330-353.
Huang, L., Murong, L., and Wang, W., “Green closed-loop supply chain network design considering cost control and CO2 emission,” Modern Supply Chain Research and Applications, ahead-of-print, 2020.
Huang, Y.-C., Huang, C.-H., and Yang, M.-L., “Drivers of green supply chain initiatives and performance: Evidence from the electrical and electronics industries in Taiwan,” International Journal of Physical Distribution & Logistics Management, Vol. 47, No. 9, 2017, pp.796-819.
Hwang, C.L. and Masud, A.S.M., Multiple-objective decision making, methods and applications: A state-of-the-art survey, Springer-Verlag, Berlin, 1979.
Jayaraman, V., Patterson, R.A., and Rolland, E., “The design of reverse distribution networks: Models and solution procedures,” European Journal of Operational Research, Vol. 150, No.1, 2003, pp.128-149.
Jose Alem, D., and Morabito, R., “Production planning in furniture settings via robust optimization,” Computers & Operations Research, Vol.39, 2012, pp.139-150.
Kannan, G., Sasikumar, P., and Devika, K., “A genetic algorithm approach for solving a closed loop supply chain model: A case of battery recycling,” Applied Mathematical Modelling, Vol. 34, No. 3, 2010, pp.655-670.
Karimi, B., Niknamfar, A.H., Gavyar, B.H., Barzegar, M., and Mohtashami, A., “Multi-objective multi-facility green manufacturing closed-loop supply chain under uncertain environment,” Assembly Automation, Vol. 39, No. 1, 2019, pp.58-76.
Kazemia, N., Modak, N. M., and Govindan, K., “A review of reverse logistics and closed loop supply chain management studies published in IJPR: A bibliometric and content analysis,” International Journal of Production Research, Vol. 57, No. 15-16, 2019, pp.4937-4960.
Khalilzadeh, M. and Derikvand, H., “A multi-objective supplier selection model for green supply chain network under uncertainty,” Journal of Modelling in Management, Vol. 13 No. 3, 2018, pp. 605-625.
Kim, K., Jeong, B., and Jung, H., “Supply chain surplus: Comparing conventional and sustainable supply chains,” Flexible Services and Manufacturing Journal, Vol. 26, 2014, pp.5-23.
Ko, H.J. and Evans, G.W., “A genetic algorithm-based heuristic for the dynamic integrated forward reverse logistics network for 3PLs,” Computers & Operations Research, Vol.34, No.2, 2007, pp.346-366.
Krumwiede, D.W. and Sheu C., “A model for reverse logistics entry by third-party providers,” Omega, Vol.30, No. 5, 2002, pp. 325-333.
Lee, D. H. and Dong, M., “A heuristic approach to logistics network design for end-of-lease computer products recovery,” Transportation Research Part E, Vol. 44, No. 3, 2008, pp. 455-474.
Lee, D.-H., Dong, M., and Bian, W., “The design of sustainable logistics network under uncertainty,” International Journal of Production Economics, Vol. 128, No. 1, 2010, pp.159-166.
Linton, J.D., Klassen, R., and Jayamaran, V., “Sustainable supply chains: an introduction,” Journal of Operations Management, Vol. 25, No. 6, 2007, pp.1075-1082.
Liu, M., Liu, R., Zhu, Z., Chu, C., and Man, X., “A bi-objective green closed loop supply chain design problem with uncertain demand,” Sustainability, Vol. 10, No. 4, 2018, pp.967-988.
Louwers, D., Kip, B. J., Peters, E., Souren, F., and Flapper, S. D. P. "A facility location allocation model for reusing carpet materials," Computers & Industrial Engineering ,Vol. 36, No.4, 1999, pp. 855-869.
Lu, Z. and Bostel, N., “A facility location model for logistics systems including reverse flows: The case of remanufacturing activities,” Computers & Operations Research, Vol.34, No. 2, 2007, pp. 299-323.
Ma, R., Yao, L., Jin, M., Ren, P., and Lv, Z., “Robust environmental closed-loop supply chain design under uncertainty,” Chaos, Solitons & Fractals, Vol. 89, 2016, pp.195-202.
Mahdi Saffar, M., Shakouri G., H., and Razmi, J., “A new multi objective optimization model for designing a green supply chain network under uncertainty,” International Journal of Industrial Engineering Computations, Vol. 6, No. 1, 2015, pp.15-32.
Mazloumian, M., Fazle Baki, M., and Ahmadi, M., “A robust multiobjective integrated master surgery schedule and surgical case assignment model at a publicly funded hospital,” Computers & Industrial Engineering, Vol.163, 2022, p.107826.
Meade, L. and Sarkis, J., “A conceptual model for selecting and evaluating third-party reverse logistics providers,” Supply Chain Management: An International Journal, Vol. 7, No. 5, 2002, pp. 283- 295.
Meixell, M. J. and Gargeya, V. B., “Global supply chain design: A literature review and critique,” Transportation Research Part E, Vol. 41, No. 6, 2005, pp. 531-550.
Mirzapour Al-e-hashem, S.M.J., Malekly, H., and Aryanezhad, M.B., “A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty,” International Journal of Production Economics, Vol.134, No. 1, 2011, pp.28-42.
Mohammed, F., Selim, S. Z., Hassan, A., and Syed, M. N., “Multi-period planning of closed-loop supply chain with carbon policies under uncertainty,” Transportation Research Part D, Vol. 51, 2017, pp.146-172.
Mota, B., Gomes, M. I., Carvalho, A., and Barbosa-Povoa, A. P., “Towards supply chain sustainability: economic, environmental and social design and planning” Journal of Cleaner Production, Vol. 105, 2015, pp.14-27.
Mulvey, J. M., Vanderbei, R. J., and Zenios, S. A., "Robust optimization of large-scale systems," Operations research, Vol. 43, No. 2 ,1995, pp. 264-281.
Oršič, J., Rosi, B., and Jereb, B., “Measuring sustainable performance among logistic service providers in supply chains,” Tehnički Vjesnik – Technical Gazette, Vol. 26, No. 5, 2019, pp.1478-1485.
Özkır, V., and Baslıgil, H., “Multi-objective optimization of closed-loop supply chains in uncertain environment,” Journal of Cleaner Production, Vol. 41, 2013, pp.114-125.
Paksoy, T., Özceylana, E., and Weber, G.-W., “A multi objective model for optimization of a green supply chain network,” Global Journal of Technology and Optimization, Vol. 2, 2011, pp.84-96.
Pasandideh, S.H.R., Niaki, S.T.A., and Asadi, K., “Bi-objective optimization of a multi-product multi-period three-echelon supply chain problem under uncertain environments: NSGA-II and NRGA,” Information Sciences, Vol. 292, 2015, pp.57-74.
Peng H., Shen, N., Liao, H. L., Xue, H. Q., and Wang, Q. W., “Uncertainty factors, methods, and solutions of closed-loop supply chain - A review for current situation and future prospects,” Journal of Cleaner Production, Vol. 254, 2020, pp.1-20.
Pishvaee, M. S., Farahani, R. Z., and Dullaert, W., “A memetic algorithm for bi-objective integrated forward/reverse logistics network design,” Computers & Operations Research, Vol. 37, No. 6, 2010, pp.1100-1112.
Pishvaee, M. S., Jolai, F., and Razmi, J., “A stochastic optimization model for integrated forward/reverse logistics network design,” Journal of Manufacturing Systems, Vol.28, No. 4, 2009, pp.107-114.
Pishvaee, M. S., Rabbani, M., and Torabi, S. A., “A robust optimization approach to closed-loop supply chain network design under uncertainty,” Applied Mathematical Modelling, Vol. 35, No. 2, 2011, pp.637-649.
Pishvaee, M. S. and Razmi, J., “Environmental supply chain network design using multi-objective fuzzy mathematical programming,” Applied Mathematical Modelling, Vol. 36, No.8, 2012, pp. 3433–3446.
Pourjavad, E. and Mayorga, R.V., “Optimization of a sustainable closed loop supply chain network design under uncertainty using multi-objective evolutionary algorithms,” Advances in Production Engineering & Management, Vol. 13, No. 2, 2018, pp.216-228.
Quariguasi Frota Neto, J., Walther, G., Bloemhof, J., van Nunen, J. A. E. E., and Spengler, T., “From closed-loop to sustainable supply chains: The WEEE case,” International Journal of Production Research, Vol. 48, No. 15, 2010, pp.4463-4481.
Ramezani, M., Bashiri, M., and Tavakkoli-Moghaddam, R., “A new multi-objective stochastic model for a forward/reverse logistic network design with responsiveness and quality level,” Applied Mathematical Modelling, Vol. 37, No. 1-2, 2013, pp.328-344.
Ramezani, M., Farhang Moghaddam, B., Pishvaee, M. S., Bozorgi-Amiri, A., and Gholamnejad, S., “A robust fuzzy optimization model for carbon-efficient closed-loop supply chain network design problem: a numerical illustration in electronics industry,” Journal of Cleaner Production, Vol. 113, 2016, pp.662-673.
Safaei, A. S., Roozbeh, A., and Paydar, M. M., “A robust optimization model for the design of a cardboard closed-loop supply chain,” Journal of Cleaner Production, Vol.166, 2017, pp. 1154-1168.
Salema, M. I. G., Póvoa, A. P. B., and Novais, A. Q., “A strategic and tactical model for closed-loop supply chains,” OR Spectrum, Vol. 31, No. 3, 2009, pp.573-599.
Salema, M. I. G., Póvoa, A. P. B., and Novais, A. Q., “A warehouse-based design model for reverse logistics”, Journal of the Operational Research Society, Vol. 57, No. 6, 2006, pp.615-629.
Sánchez-Flores, R.B., Cruz-Sotelo, S.E., Ojeda-Benitez, S., and Ramírez-Barreto, M.E., “Sustainable supply chain management- A literature review on emerging economies,” Sustainability, Vol.12, No. 17, 2020, pp.6972.
Sarkis, J., “A strategic decision framework for green supply chain management,” Journal of Cleaner Production, Vol. 11, No. 4, 2003, pp. 397-409.
Sarkis, J., Zhu, Q., and Lai, K.-h., “An organizational theoretic review of green supply chain management literature,” International Journal of Production Economics, Vol.130, No. 1, 2011, pp.1-15.
Seuring, S. and Müller, M., “From a literature review to a conceptual framework for sustainable supply chain management,” Journal of Cleaner Production, Vol. 16, 2008, pp.1699-1710.
Shi, J., Zhang, G., and Sha, J., “Optimal production planning for a multi-product closed loop system with uncertain demand and return,” Computers & Operations Research, Vol. 38, No. 3, 2011, pp.641-650.
Sheu, J. B., Chou, Y. H., and Hu, C., “An integrated logistic operational model for green supply chain management,” Transportation Research Part E, Vol. 41, No. 4, 2005, pp. 287-313.
Shih, L.H., “Reverse logistics system planning for recycling electrical appliances and computers in Taiwan,” Resources, Conservation and Recycling, Vol.32, No.1, 2001, pp.55-72.
Srivastava, S.K., “Green supply‐chain management: A state‐of‐the‐art literature review,” International Journal of Management Reviews, Vol.9, No.1, 2007, pp.53-80.
Trisna, T., Marimin, M., Arkeman, Y., and Sunarti, T. C., “Multi-objective optimization for supply chain management problem: A literature review,” Decision Science Letters, Vol.5, 2016, pp.283-316.
Tseng, M.-L., Islam, M. S., Karia, N., Fauzi, F. A., and Afrin, S., “A literature review on green supply chain management: Trends and future challenges,” Resources, Conservation & Recycling, Vol.141, 2019, pp.145-162.
Uster, H., Easwaran, G., Akcali, E., and Cetinkaya, S., “Benders decomposition with alternative multiple cuts for a multi-product closed-loop supply chain network design model,” Naval Research Logistics, Vol. 54, No. 8, 2007, pp.890-907.
Yang, G., Wang, Z., and Li, X., “The optimization of the closed-loop supply chain network,” Transportation Research Part E, Vol. 45, No. 1, 2009, pp. 16-28.
Yavari, M. and Geraeli, M., “Heuristic method for robust optimization model for green closed-loop supply chain network design of perishable goods,” Journal of Cleaner Production, Vol.226, 2019, pp.282-305.
Yeh, W.-C. and Chuang, M.-C., “Using multi-objective genetic algorithm for partner selection in green supply chain problems,” Expert Systems With Applications, Vol.38, No. 4, 2011, pp.4244-4253.
Yu, C. and Li, H., “A robust optimization model for stochastic logistic problems,” International Journal of Production Economics, Vol. 64, 2000, pp.385-397.
Zhalechian, M., Tavakkoli-Moghaddam, R., Zahiri, B., and Mohammadi, M., “Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty,” Transportation Research Part E, Vol.89, 2016, pp.182-214.
Zhao, R., Liu, Y., Zhang, N., and Huang, T., “An optimization model for green supply chain management by using a big data analytic approach,” Journal of Cleaner Production, Vol. 142, 2017, pp.1085-1097.
描述 博士
國立政治大學
資訊管理學系
102356508
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0102356508
資料類型 thesis
dc.contributor.advisor 林我聰zh_TW
dc.contributor.advisor Lin, Woo-Tsongen_US
dc.contributor.author (Authors) 方怡文zh_TW
dc.contributor.author (Authors) Fang, I-Wenen_US
dc.creator (作者) 方怡文zh_TW
dc.creator (作者) Fang, I-Wenen_US
dc.date (日期) 2022en_US
dc.date.accessioned 2-May-2022 15:00:26 (UTC+8)-
dc.date.available 2-May-2022 15:00:26 (UTC+8)-
dc.date.issued (上傳時間) 2-May-2022 15:00:26 (UTC+8)-
dc.identifier (Other Identifiers) G0102356508en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/139983-
dc.description (描述) 博士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊管理學系zh_TW
dc.description (描述) 102356508zh_TW
dc.description.abstract (摘要) 近年環境保護、循環經濟、企業社會責任等議題受到強烈關注,綠色閉迴路供應鏈的相關研究已成為重要課題。企業一方面面對環境議題、法規規範等,另一方面面對競爭激烈經營生態,企業如何有效提升產品或服務的品質,快速回應市場需求,並促成資源循環再利用,將是企業維持競爭力且永續經營的關鍵。
從相關研究文獻中,可發現閉迴路供應鏈模式中,主要多以經濟與環境指標為目標函數,較少考量其他績效評估指標。為補足上述研究缺口,本研究在閉迴路供應鏈網路架構下,考量不確定性,以多目標混合整數規劃方法,建立同時考量經濟因素、環境因素與品質因素之綠色閉迴路供應鏈多目標資源配置決策模式,以尋求利潤最大化、清潔生產最佳化、供應鏈品質最佳化為目標。針對不確定性因素,本研究以情境為基礎的穩健最佳化方法,在綜合考量不同情境下,求得一穩健最佳解。
本研究透過真實產業案例評估數量模式之可行性,面對環境之不確定性與多元的決策目標,可透過此模式進行最佳化資源配置評估,作為企業決策訂定之參考依據。本研究所提出綠色閉迴路供應鏈之多目標穩健最佳化決策模式相關研究成果,不僅可作為閉迴路供應鏈相關學術領域研究之參考,在實務上,亦可引導企業建立綠色閉迴路供應鏈資源配置決策模式,以利企業在複雜多變的經營環境,有效訂定較佳決策,協助企業取得較佳獲利能力與競爭優勢。
zh_TW
dc.description.abstract (摘要) In order to keep a company’s competitive capability, effective integrated management of the supply chain are important recently. Due to the topics such as the environmental issues, the governments’ legislation, natural resource limitation and circular economy having got consumers’s awareness, the related researches of the closed-loop supply chain which integrate the forward and reverse supply chain are increasingly growing. Companies not only have to meet the environmental regulations, but also have to sustain high quality of the supply chain operation as a means to stay competitive advantage and profit capability.
This study proposes a multi-objective mixed integer programming model for an integrated green closed-loop supply chain network designed to maximize profit, amicable production level (environmentally friendly materials and clean technology usage), and quality level. A scenario‐based robust optimization method is used to deal with uncertain parameters such as the demand of new products, the return rates of returned products and the sale prices of remanufactured products.
The proposed model is applied to a real industry case example of a manufacturing company to illustrate the applicability of the proposed model. The result shows a robust optimal resource allocation solution that considers multiple scenarios. This study can be a reference for closed‐loop supply chain related academic research and also can be used to guide the development of a green closed‐loop supply chain model for better decision making.
en_US
dc.description.tableofcontents 目錄

第一章 緒論 1
第一節 研究背景 1
第二節 研究動機 3
第三節 研究目的 7
第四節 研究架構與流程 8
第二章 文獻探討 12
第一節 逆物流相關模式 12
第二節 閉迴路供應鏈模式 15
第三節 綠色/永續供應鏈模式 20
第四節 多目標函數指標 27
第五節 多目標問題之解決方法 31
第六節 不確定性參數問題之解決方法 35
第七節 文獻回顧小結 38
第三章 模式建立 42
第一節 研究範疇 42
第二節 確定性最佳化模式建構與說明 44
第三節 穩健最佳化模式建構與說明 54
第四節 多目標函數轉換單一目標模式建構與說明 56
第四章 案例分析與模式計算 59
第一節 應用案例說明 60
第二節 多目標函數權重與環境目標函數項目權重計算 66
第三節 確定性最佳化模式之敏感度分析 70
第四節 考量不確定性之穩健最佳化模式計算 74
第五節 清潔科技使用與生產成本對目標函數影響之分析 78
第六節 不可行性權重與模式穩健性之分析 81
第五章 研究結論與建議 83
第一節 研究結論 83
第二節 實務應用建議 85
第三節 未來研究方向 87
參考文獻 90
zh_TW
dc.format.extent 4949047 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0102356508en_US
dc.subject (關鍵詞) 閉迴路供應鏈zh_TW
dc.subject (關鍵詞) 多目標混合整數規劃zh_TW
dc.subject (關鍵詞) 穩健最佳化zh_TW
dc.subject (關鍵詞) Closed-loop supply chainen_US
dc.subject (關鍵詞) Multi-objective mixed integer programming modelen_US
dc.subject (關鍵詞) Robust optimizationen_US
dc.title (題名) 綠色閉迴路供應鏈之多目標穩健最佳化決策模式zh_TW
dc.title (題名) A multi-objective robust optimization model for green closed-loop supply chain network designen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 參考文獻
Ageron, B., Gunasekaran, A., and Spalanzani, A., “Sustainable supply management: An empirical study,” International Journal of Production Economics, Vol. 140, No. 1, 2012, pp. 168-182.
Al Jadaan, O., Rao, C.R., and Rajamani, L., Parametric study to enhance genetic algorithm performance, using ranked based roulette wheel selection method, InSciT, Merida, Spain, 2006, pp.274-278.
Almaraj, I.I., Trafalis, T.B., “A robust optimization approach in a multi-objective closed-loop supply chain model under imperfect quality production,” Annals of Operations Research, 2021. https://doi.org/10.1007/s10479-021-04286-8.
Altmann, M. and Bogaschewsky, R., “An environmentally conscious robust closed-loop supply chain design,” Journal of Business Economics, Vol. 84, No. 5, 2014, pp. 613-637.
Amin, S. H. and Zhang, G., “A three-stage model for closed-loop supply chain configuration under uncertainty,” International Journal of Production Research, Vol. 51, No. 5, 2013a, pp.1405–1425.
Amin, S. H. and Zhang, G., “A multi-objective facility location model for closed-loop supply chain network under uncertain demand and return,” Applied Mathematical Modelling, Vol.37, No.6, 2013b, pp.4165-4176.
Ansari, Z.N. and Qureshi, M.N., “Sustainability in supply chain management: An overview,” The IUP Journal of Supply Chain Management, Vol. 12, 2015, pp.24-46.
Atabaki, M. S., Mohammadi, M., and Naderi, B., “New robust optimization models for closed-loop supply chain of durable products: Towards a circular economy,” Computers & industrial engineering, Vol.146, 2020, pp.106520.
Bansal, P. and Roth, K., “Why companies go green: a model of ecological responsiveness,” Academy of Management Journal, Vol. 43, No. 4, 2000, pp.717-736.
Battini, D., Bogataj, M., and Choudhary, A., “Closed loop supply chain (CLSC): Economics, modelling, management and control,” International Journal of Production Economics, Vol. 183, Part B, 2017, pp.319–321.
Beamon, B.M., “Designing the green supply chain,” Logistics Information Management, Vol. 12, No. 4, 1999, pp. 332-342.
Bottani, E., Montanari, R., Rinaldi, M., and Vignali, G., “Modeling and multi-objective optimization of closed loop supply chains: A case study,” Computers & Industrial Engineering, Vol. 87, 2015, pp.328-342.
Cardoso, S. R., Barbosa-Póvoa, A. P. F. D., and Relvas, S., “Design and planning of supply chains with integration of reverse logistics activities under demand uncertainty,” European Journal of Operational Research, Vol. 226, No. 3, 2013, pp.436-451.
Castillo-Villara, K. K., Smithb, N. R., and Simonton, J. L., “The impact of the cost of quality on serial supply-chain network design,” International Journal of Production Research, Vol. 50, No. 19, 2012, pp.5544-5566.
Chankong, V. and Haimes, Y. Y., “Optimization-based methods for multiobjective decisionmaking-An overview,” Large Scale Systems In Information And Decision Technologies, Vol.5, No.1, 1983, pp.1–33.
Chen, Z. and Andresen, S., “A multiobjective optimization model of production-sourcing for sustainable supply chain with consideration of social, environmental, and economic factors,” Mathematical Problems in Engineering, Vol. 2014, 2014, pp.1-11.
Das, K. and Rao Posinasetti, N., “Addressing environmental concerns in closed loop supply chain design and planning,” International Journal of Production Economics, Vol. 163, 2015, pp.34-47.
Deb, K., Pratap, A., Agerwal, S., and Meyarivan, T., “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, Vol. 6, 2002, pp.182–197.
El-Sayed, M., Afia, N., and El-Kharbotly, A., “A stochastic model for forward–reverse logistics network design under risk,” Computers & Industrial Engineering, Vol. 58, No. 3, 2010, pp.423–431.
Fleischmann, M., Bloemhof-Ruwaard, J. M., Dekker, R., Van Der Laan, E., Van Nunen, J. A. E. E., and Van Wassenhove, L. N. "Quantitative models for reverse logistics: A review," European Journal of Operational Research ,Vol.103,No.1,1997, pp. 1-17.
Fleischmann, M., Beullens, P., Bloemhof-Ruwaard, J., and Van Wassenhove, L., "The impact of product recovery on logistics network design," Production and Operations Management, Vol. 10, No. 2, 2001, pp.156-173.
Franca, R. B., Jones, E. C., Richards, C. N., and Carlson, J. P., “Multi-objective stochastic supply chain modeling to evaluate tradeoffs between profit and quality,” International Journal Production Economics, Vol. 127, No. 2, 2010, pp.292-299.
Garg, K., Kannan, D., Diabat, A., and Jha, P. C., “A multi-criteria optimization approach to manage environmental issues in closed loop supply chain network design,” Journal of Cleaner Production, Vol. 100, 2015, pp.297-314.
Govindan, K., Soleimani, H., and Kannan, D., “Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future,” European Journal of Operational Research, Vol. 240, No. 3, 2015, pp.603–626.
Guide, V. D. R., Jr. and Van Wassenhove , L. N., “The evolution of closed-loop supply chain research, Operations Research, Vol. 57, No. 1, 2009, pp.10-18.
Guide, V. D. R., Jayaraman, V., and Linton, J. D., “Building contingency planning for closed-loop supply chains with product recovery,” Journal of Operations Management,Vol. 21, No. 3, 2003, pp.259-279.
Guiffrida, A.L., Datta, P., El Saadany, A., Jaber, M., and Bonney, M.,. “Environmental performance measures for supply chains,” Management Research Review, Vol. 34, No. 11, 2011, pp.1202-1221.
Haimes, Y. Y., Lasdon, L. S., and Wismer, D. A., “On a bicriterion formulation of the problems of integrated system identification and system optimization,” IEEE Transactions on Systems Man and Cybernetics, Vol.1, 1971, pp.296-297.
Hatefi and Jolai, “Robust and reliable forward–reverse logistics network design under demand uncertainty and facility disruptions,” Applied Mathematical modelling, Vol.38, No.9-10, 2014, pp.2630-2647.
Hervani, A.A., Helms, M.M., and Sarkis, J., “Performance measurement for green supply chain management,” Benchmarking: An International Journal, Vol.12, No. 4 , 2005, pp.330-353.
Huang, L., Murong, L., and Wang, W., “Green closed-loop supply chain network design considering cost control and CO2 emission,” Modern Supply Chain Research and Applications, ahead-of-print, 2020.
Huang, Y.-C., Huang, C.-H., and Yang, M.-L., “Drivers of green supply chain initiatives and performance: Evidence from the electrical and electronics industries in Taiwan,” International Journal of Physical Distribution & Logistics Management, Vol. 47, No. 9, 2017, pp.796-819.
Hwang, C.L. and Masud, A.S.M., Multiple-objective decision making, methods and applications: A state-of-the-art survey, Springer-Verlag, Berlin, 1979.
Jayaraman, V., Patterson, R.A., and Rolland, E., “The design of reverse distribution networks: Models and solution procedures,” European Journal of Operational Research, Vol. 150, No.1, 2003, pp.128-149.
Jose Alem, D., and Morabito, R., “Production planning in furniture settings via robust optimization,” Computers & Operations Research, Vol.39, 2012, pp.139-150.
Kannan, G., Sasikumar, P., and Devika, K., “A genetic algorithm approach for solving a closed loop supply chain model: A case of battery recycling,” Applied Mathematical Modelling, Vol. 34, No. 3, 2010, pp.655-670.
Karimi, B., Niknamfar, A.H., Gavyar, B.H., Barzegar, M., and Mohtashami, A., “Multi-objective multi-facility green manufacturing closed-loop supply chain under uncertain environment,” Assembly Automation, Vol. 39, No. 1, 2019, pp.58-76.
Kazemia, N., Modak, N. M., and Govindan, K., “A review of reverse logistics and closed loop supply chain management studies published in IJPR: A bibliometric and content analysis,” International Journal of Production Research, Vol. 57, No. 15-16, 2019, pp.4937-4960.
Khalilzadeh, M. and Derikvand, H., “A multi-objective supplier selection model for green supply chain network under uncertainty,” Journal of Modelling in Management, Vol. 13 No. 3, 2018, pp. 605-625.
Kim, K., Jeong, B., and Jung, H., “Supply chain surplus: Comparing conventional and sustainable supply chains,” Flexible Services and Manufacturing Journal, Vol. 26, 2014, pp.5-23.
Ko, H.J. and Evans, G.W., “A genetic algorithm-based heuristic for the dynamic integrated forward reverse logistics network for 3PLs,” Computers & Operations Research, Vol.34, No.2, 2007, pp.346-366.
Krumwiede, D.W. and Sheu C., “A model for reverse logistics entry by third-party providers,” Omega, Vol.30, No. 5, 2002, pp. 325-333.
Lee, D. H. and Dong, M., “A heuristic approach to logistics network design for end-of-lease computer products recovery,” Transportation Research Part E, Vol. 44, No. 3, 2008, pp. 455-474.
Lee, D.-H., Dong, M., and Bian, W., “The design of sustainable logistics network under uncertainty,” International Journal of Production Economics, Vol. 128, No. 1, 2010, pp.159-166.
Linton, J.D., Klassen, R., and Jayamaran, V., “Sustainable supply chains: an introduction,” Journal of Operations Management, Vol. 25, No. 6, 2007, pp.1075-1082.
Liu, M., Liu, R., Zhu, Z., Chu, C., and Man, X., “A bi-objective green closed loop supply chain design problem with uncertain demand,” Sustainability, Vol. 10, No. 4, 2018, pp.967-988.
Louwers, D., Kip, B. J., Peters, E., Souren, F., and Flapper, S. D. P. "A facility location allocation model for reusing carpet materials," Computers & Industrial Engineering ,Vol. 36, No.4, 1999, pp. 855-869.
Lu, Z. and Bostel, N., “A facility location model for logistics systems including reverse flows: The case of remanufacturing activities,” Computers & Operations Research, Vol.34, No. 2, 2007, pp. 299-323.
Ma, R., Yao, L., Jin, M., Ren, P., and Lv, Z., “Robust environmental closed-loop supply chain design under uncertainty,” Chaos, Solitons & Fractals, Vol. 89, 2016, pp.195-202.
Mahdi Saffar, M., Shakouri G., H., and Razmi, J., “A new multi objective optimization model for designing a green supply chain network under uncertainty,” International Journal of Industrial Engineering Computations, Vol. 6, No. 1, 2015, pp.15-32.
Mazloumian, M., Fazle Baki, M., and Ahmadi, M., “A robust multiobjective integrated master surgery schedule and surgical case assignment model at a publicly funded hospital,” Computers & Industrial Engineering, Vol.163, 2022, p.107826.
Meade, L. and Sarkis, J., “A conceptual model for selecting and evaluating third-party reverse logistics providers,” Supply Chain Management: An International Journal, Vol. 7, No. 5, 2002, pp. 283- 295.
Meixell, M. J. and Gargeya, V. B., “Global supply chain design: A literature review and critique,” Transportation Research Part E, Vol. 41, No. 6, 2005, pp. 531-550.
Mirzapour Al-e-hashem, S.M.J., Malekly, H., and Aryanezhad, M.B., “A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty,” International Journal of Production Economics, Vol.134, No. 1, 2011, pp.28-42.
Mohammed, F., Selim, S. Z., Hassan, A., and Syed, M. N., “Multi-period planning of closed-loop supply chain with carbon policies under uncertainty,” Transportation Research Part D, Vol. 51, 2017, pp.146-172.
Mota, B., Gomes, M. I., Carvalho, A., and Barbosa-Povoa, A. P., “Towards supply chain sustainability: economic, environmental and social design and planning” Journal of Cleaner Production, Vol. 105, 2015, pp.14-27.
Mulvey, J. M., Vanderbei, R. J., and Zenios, S. A., "Robust optimization of large-scale systems," Operations research, Vol. 43, No. 2 ,1995, pp. 264-281.
Oršič, J., Rosi, B., and Jereb, B., “Measuring sustainable performance among logistic service providers in supply chains,” Tehnički Vjesnik – Technical Gazette, Vol. 26, No. 5, 2019, pp.1478-1485.
Özkır, V., and Baslıgil, H., “Multi-objective optimization of closed-loop supply chains in uncertain environment,” Journal of Cleaner Production, Vol. 41, 2013, pp.114-125.
Paksoy, T., Özceylana, E., and Weber, G.-W., “A multi objective model for optimization of a green supply chain network,” Global Journal of Technology and Optimization, Vol. 2, 2011, pp.84-96.
Pasandideh, S.H.R., Niaki, S.T.A., and Asadi, K., “Bi-objective optimization of a multi-product multi-period three-echelon supply chain problem under uncertain environments: NSGA-II and NRGA,” Information Sciences, Vol. 292, 2015, pp.57-74.
Peng H., Shen, N., Liao, H. L., Xue, H. Q., and Wang, Q. W., “Uncertainty factors, methods, and solutions of closed-loop supply chain - A review for current situation and future prospects,” Journal of Cleaner Production, Vol. 254, 2020, pp.1-20.
Pishvaee, M. S., Farahani, R. Z., and Dullaert, W., “A memetic algorithm for bi-objective integrated forward/reverse logistics network design,” Computers & Operations Research, Vol. 37, No. 6, 2010, pp.1100-1112.
Pishvaee, M. S., Jolai, F., and Razmi, J., “A stochastic optimization model for integrated forward/reverse logistics network design,” Journal of Manufacturing Systems, Vol.28, No. 4, 2009, pp.107-114.
Pishvaee, M. S., Rabbani, M., and Torabi, S. A., “A robust optimization approach to closed-loop supply chain network design under uncertainty,” Applied Mathematical Modelling, Vol. 35, No. 2, 2011, pp.637-649.
Pishvaee, M. S. and Razmi, J., “Environmental supply chain network design using multi-objective fuzzy mathematical programming,” Applied Mathematical Modelling, Vol. 36, No.8, 2012, pp. 3433–3446.
Pourjavad, E. and Mayorga, R.V., “Optimization of a sustainable closed loop supply chain network design under uncertainty using multi-objective evolutionary algorithms,” Advances in Production Engineering & Management, Vol. 13, No. 2, 2018, pp.216-228.
Quariguasi Frota Neto, J., Walther, G., Bloemhof, J., van Nunen, J. A. E. E., and Spengler, T., “From closed-loop to sustainable supply chains: The WEEE case,” International Journal of Production Research, Vol. 48, No. 15, 2010, pp.4463-4481.
Ramezani, M., Bashiri, M., and Tavakkoli-Moghaddam, R., “A new multi-objective stochastic model for a forward/reverse logistic network design with responsiveness and quality level,” Applied Mathematical Modelling, Vol. 37, No. 1-2, 2013, pp.328-344.
Ramezani, M., Farhang Moghaddam, B., Pishvaee, M. S., Bozorgi-Amiri, A., and Gholamnejad, S., “A robust fuzzy optimization model for carbon-efficient closed-loop supply chain network design problem: a numerical illustration in electronics industry,” Journal of Cleaner Production, Vol. 113, 2016, pp.662-673.
Safaei, A. S., Roozbeh, A., and Paydar, M. M., “A robust optimization model for the design of a cardboard closed-loop supply chain,” Journal of Cleaner Production, Vol.166, 2017, pp. 1154-1168.
Salema, M. I. G., Póvoa, A. P. B., and Novais, A. Q., “A strategic and tactical model for closed-loop supply chains,” OR Spectrum, Vol. 31, No. 3, 2009, pp.573-599.
Salema, M. I. G., Póvoa, A. P. B., and Novais, A. Q., “A warehouse-based design model for reverse logistics”, Journal of the Operational Research Society, Vol. 57, No. 6, 2006, pp.615-629.
Sánchez-Flores, R.B., Cruz-Sotelo, S.E., Ojeda-Benitez, S., and Ramírez-Barreto, M.E., “Sustainable supply chain management- A literature review on emerging economies,” Sustainability, Vol.12, No. 17, 2020, pp.6972.
Sarkis, J., “A strategic decision framework for green supply chain management,” Journal of Cleaner Production, Vol. 11, No. 4, 2003, pp. 397-409.
Sarkis, J., Zhu, Q., and Lai, K.-h., “An organizational theoretic review of green supply chain management literature,” International Journal of Production Economics, Vol.130, No. 1, 2011, pp.1-15.
Seuring, S. and Müller, M., “From a literature review to a conceptual framework for sustainable supply chain management,” Journal of Cleaner Production, Vol. 16, 2008, pp.1699-1710.
Shi, J., Zhang, G., and Sha, J., “Optimal production planning for a multi-product closed loop system with uncertain demand and return,” Computers & Operations Research, Vol. 38, No. 3, 2011, pp.641-650.
Sheu, J. B., Chou, Y. H., and Hu, C., “An integrated logistic operational model for green supply chain management,” Transportation Research Part E, Vol. 41, No. 4, 2005, pp. 287-313.
Shih, L.H., “Reverse logistics system planning for recycling electrical appliances and computers in Taiwan,” Resources, Conservation and Recycling, Vol.32, No.1, 2001, pp.55-72.
Srivastava, S.K., “Green supply‐chain management: A state‐of‐the‐art literature review,” International Journal of Management Reviews, Vol.9, No.1, 2007, pp.53-80.
Trisna, T., Marimin, M., Arkeman, Y., and Sunarti, T. C., “Multi-objective optimization for supply chain management problem: A literature review,” Decision Science Letters, Vol.5, 2016, pp.283-316.
Tseng, M.-L., Islam, M. S., Karia, N., Fauzi, F. A., and Afrin, S., “A literature review on green supply chain management: Trends and future challenges,” Resources, Conservation & Recycling, Vol.141, 2019, pp.145-162.
Uster, H., Easwaran, G., Akcali, E., and Cetinkaya, S., “Benders decomposition with alternative multiple cuts for a multi-product closed-loop supply chain network design model,” Naval Research Logistics, Vol. 54, No. 8, 2007, pp.890-907.
Yang, G., Wang, Z., and Li, X., “The optimization of the closed-loop supply chain network,” Transportation Research Part E, Vol. 45, No. 1, 2009, pp. 16-28.
Yavari, M. and Geraeli, M., “Heuristic method for robust optimization model for green closed-loop supply chain network design of perishable goods,” Journal of Cleaner Production, Vol.226, 2019, pp.282-305.
Yeh, W.-C. and Chuang, M.-C., “Using multi-objective genetic algorithm for partner selection in green supply chain problems,” Expert Systems With Applications, Vol.38, No. 4, 2011, pp.4244-4253.
Yu, C. and Li, H., “A robust optimization model for stochastic logistic problems,” International Journal of Production Economics, Vol. 64, 2000, pp.385-397.
Zhalechian, M., Tavakkoli-Moghaddam, R., Zahiri, B., and Mohammadi, M., “Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty,” Transportation Research Part E, Vol.89, 2016, pp.182-214.
Zhao, R., Liu, Y., Zhang, N., and Huang, T., “An optimization model for green supply chain management by using a big data analytic approach,” Journal of Cleaner Production, Vol. 142, 2017, pp.1085-1097.
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU202200404en_US