Publications-Theses
Article View/Open
Publication Export
-
題名 運用函數主成分分析於阿茲海默症之診斷
Application of functional principal component analysis to diagnosis of Alzheimer’s disease作者 李詠玄
Lee, Yong-Shiuan貢獻者 劉惠美
Liu, Hui-Mei
李詠玄
Lee, Yong-Shiuan關鍵詞 阿茲海默症
函數主成分分析
遞迴類神經網路
長短期記憶類神經網路
長期追蹤資料
Alzheimer’s disease
Functional principal component analysis
Recurrent neural networks
Long short-term memory networks
Longitudinal data日期 2022 上傳時間 1-Aug-2022 17:13:51 (UTC+8) 摘要 自二十世紀晚期對於探討阿茲海默症成因、病情發展與有效治療方式的研究大量增加。其中最重要的目標之一即為於早期診斷出阿茲海默症,也就是輕度認知障礙。診斷輕度認知障礙或阿茲海默症即是統計上的分類問題。通常阿茲海默症的相關研究資料皆為長期追蹤資料,由於資料收集的方式,使得資料多為稀疏性且不規則間隔的資料。再者,基於近年來醫學診斷工具,尤其是腦部顯影的技術進步與普及,阿茲海默症資料更常為具有高維度的資料。傳統上常用的統計分類方法對於此類資料型態有其侷限性。本研究首先將資料的變數視為只具有少數觀察值的函數,使用函數主成分分析工具來重建高維度、稀疏且不規則間隔的資料,使資料收集區間內的所有觀察時間點皆能有函數的估計值。接續再利用遞迴類神經網路中專門針對時間序列資料的長短期記憶類神經網路,來對研究對象做診斷的分類。本研究的實證結果指出在最佳情境下,此作法使用較多觀察值於訓練資料集,以及使用較多的輸入變數,能夠正確辨認出最多的早期輕度認知障礙者(十一個患者中正確辨認出五個)。顯示此法對於辨認早期的輕度認知障礙有較大的潛力。針對阿茲海默症此類醫學研究中常見的不平衡資料,未來可考慮加入重新採樣的方法或是成本考量的分類方法進一步發展優化本文所提出之程序。
Since the late 20th century, researches of Alzheimer’s disease intending to better understand the causes, the progression, and effective treatments of this disease have boosted. One of the most important purposes of these researches is to detect the disease at early stages, that is, the diagnosis of mild cognitive impairment. The diagnosis is certainly the classification problem in statistics. The research data of Alzheimer’s disease are usually longitudinal, which can be very sparse and irregularlyspaced as a result of data collection process. Additionally, the research data can also have high imensional features due to improvement in clinical neuroimaging techniques. Classical approaches for classification have limitations in using the sparse and irregular, highdimensional, longitudinal data. This study is the first to implement the tool of the functional principal component analysis to reconstruct the wholefunctions of all variables during the period, and then to apply the long shortterm memory networks, a recurrent neural network designed for time series data, for classification. The empirical results show that in the bestcase scenario this method identifies 5 out of 11 MCI cases in the testing dataset while the other methods only accurately predict 0 or 1 MCI case. The results suggest that this procedure has great potential for early detection of Alzheimer’s disease. The proposed method can further be developed for imbalanced data with resampling or costsensitive classification techniques.參考文獻 [1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,G. Irving, M. Isard, et al. Tensorflow: A system for largescalemachine learning.In 12th {USENIX} Symposium on Operating Systems Design and Implementation({OSDI} 16), pages 265–283, 2016.[2] A. Anoop, P. K. Singh, R. S. Jacob, and S. K. Maji. CSF biomarkers for Alzheimer’sdisease diagnosis. International journal of Alzheimer’s disease, 2010:Article ID606802, 12 pages, 2010.[3] A. Association. 2020 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia,16(3):391–460, 2020.[4] A. Association. 2021 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia,17(3):327–406, 2021.[5] S. Balakrishnan and D. Madigan. Decision trees for functional variables. In SixthInternational Conference on Data Mining (ICDM’06), pages 798–802. IEEE, 2006.[6] E. Belli and S. Vantini. Measure inducing classification and regression trees forfunctional data. Statistical Analysis and Data Mining: The ASA Data Science Journal,2021.[7] Y. Bengio. Learning deep architectures for AI. Foundations and Trends in SignalProcessing, 2(1):1–127, 2009.[8] J. R. Berrendero, A. Justel, and M. Svarc. Principal components for multivariatefunctional data. Computational Statistics & Data Analysis, 55(9):2619–2634, 2011.[9] M. Bertoux, J. Lagarde, F. Corlier, L. Hamelin, J.F.Mangin, O. Colliot, M. Chupin,M. N. Braskie, P. M. Thompson, M. Bottlaender, et al. Sulcal morphology inAlzheimer’s disease: An effective marker of diagnosis and cognition. Neurobiologyof Aging, 84:41–49, 2019.[10] M. C. Biagioni and J. E. Galvin. Using biomarkers to improve detection ofAlzheimer’s disease. Neurodegenerative Disease Management, 1(2):127–139,2011.[11] S. Borson, J. Scanlan, M. Brush, P. Vitaliano, and A. Dokmak. The MiniCog:Acognitive ‘vital signs’measure for dementia screening in multilingualelderly.International journal of geriatric psychiatry, 15(11):1021–1027, 2000.[12] S. Borson, J. M. Scanlan, P. Chen, and M. Ganguli. The MiniCogas a screenfor dementia: Validation in a populationbasedsample. Journal of the AmericanGeriatrics Society, 51(10):1451–1454, 2003.[13] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.[14] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.[15] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification andRegression Trees. Chapman & Hall/CRC, New York., 1984.[16] A. M. Brickman, J. J. Manly, L. S. Honig, D. Sanchez, D. ReyesDumeyer,R. A.Lantigua, P. J. Lao, Y. Stern, J. P. Vonsattel, A. F. Teich, et al. Plasma ptau181,ptau217,and other bloodbasedAlzheimer’s disease biomarkers in a multiethnic,community study. Alzheimer’s & Dementia, 17(8):1353–1364, 2021.[17] R. S. Bucks, D. Ashworth, G. Wilcock, and K. Siegfried. Assessment of activitiesof daily living in dementia: Development of the bristol activities of daily livingscale. Age and ageing, 25(2):113–120, 1996.[18] H. Buschke, G. Kuslansky, M. Katz, W. F. Stewart, M. J. Sliwinski, H. M. Eckholdt,and R. B. Lipton. Screening for dementia with the memory impairment screen.Neurology, 52(2):231–231, 1999.[19] B. D. Carpenter, C. Xiong, E. K. Porensky, M. M. Lee, P. J. Brown, M. Coats,D. Johnson, and J. C. Morris. Reaction to a dementia diagnosis in individuals withAlzheimer’s disease and mild cognitive impairment. Journal of the American GeriatricsSociety, 56(3):405–412, 2008.[20] L.H.Chen and C.R.Jiang. Multidimensionalfunctional principal componentanalysis. Statistics and Computing, 27(5):1181–1192, 2017.[21] W.C.Cheng, L.H.Chen, C.R.Jiang, Y.M.Deng, D.W.Wang, C.H.Lin, R. Jou,J.K.Wang, and Y.L.Wang. Sensible functional linear discriminant analysis effectivelydiscriminates enhanced Raman spectra of Mycobacterium species. AnalyticalChemistry, 93(5):2785–2792, 2021. PMID: 33480698.[22] R. Chin, A. Ng, K. Narasimhalu, and N. Kandiah. Utility of the AD8 as a selfratingtool for cognitive impairment in an Asian population. American Journal ofAlzheimer’s Disease & Other Dementias®, 28(3):284–288, 2013.[23] J.M.Chiou, Y.T.Chen, and Y.F.Yang. Multivariate functional principal componentanalysis: A normalization approach. Statistica Sinica, pages 1571–1596,2014.[24] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,and Y. Bengio. Learning phrase representations using RNN encoderdecoderforstatistical machine translation. In Proceedings of the 2014 Conference on EmpiricalMethods in Natural Language Processing (EMNLP), page 1724–1734. Associationfor Computational Linguistics (ACL), Oct. 2014.[25] S. H. Cho, S. Woo, C. Kim, H. J. Kim, H. Jang, B. C. Kim, S. E. Kim, S. J. Kim, J. P.Kim, Y. H. Jung, et al. Disease progression modelling from preclinical Alzheimer’s disease (AD) to AD dementia. Scientific reports, 11(1):1–10, 2021.[26] F. Chollet et al. Keras. urlhttps://github.com/fchollet/keras, 2015.[27] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrentneural networks on sequence modeling. arXiv preprint arXiv:1412.3555,2014.[28] M. Conceição, A. KroneMartins,and A. da Silva. FPCA emulation of cosmologicalsimulations. In 2021 IEEE 17th International Conference on eScience(eScience), pages 225–226. IEEE, 2021.[29] C. Cortes and V. Vapnik. Support vector machine. Machine Learning, 20(3):273–297, 1995.[30] R. Cui, M. Liu, A. D. N. Initiative, et al. RNNbasedlongitudinal analysis fordiagnosis of Alzheimer’s disease. Computerized Medical Imaging and Graphics,73:1–10, 2019.[31] J. M. Cuttler, E. Abdellah, Y. Goldberg, S. AlShamaa,S. P. Symons, S. E. Black,and M. Freedman. Low doses of ionizing radiation as a treatment for Alzheimer’s disease: A pilot study. Journal of Alzheimer’s Disease, 80(3):1119–1128, 2021.[32] A. Delaigle and P. Hall. Achieving near perfect classification for functionaldata. Journal of the Royal Statistical Society: Series B (Statistical Methodology),74(2):267–286, 2012.[33] A. Delaigle and P. Hall. Classification using censored functional data. Journal ofthe American Statistical Association, 108(504):1269–1283, 2013.[34] A. Delaigle, P. Hall, and N. Bathia. Componentwise classification and clusteringof functional data. Biometrika, 99(2):299–313, 2012.[35] L. Deng and D. Yu. Deep learning: Methods and applications. Foundations andTrends in Signal Processing, 7(3–4):197–387, 2014.[36] B. Dunn, P. Stein, and P. Cavazzoni. Approval of Aducanumab for Alzheimerdisease—The FDA’s perspective. JAMA Internal Medicine, 181(10):1276–1278,2021.[37] S. ElSappagh,T. Abuhmed, S. R. Islam, and K. S. Kwak. Multimodal multitaskdeep learning model for Alzheimer’s disease progression detection based on timeseries data. Neurocomputing, 412:197–215, 2020.[38] A. Ezzati, M. J. Katz, A. R. Zammit, M. L. Lipton, M. E. Zimmerman, M. J. Sliwinski,and R. B. Lipton. Differential association of left and right hippocampalvolumes with verbal episodic and spatial memory in older adults. Neuropsychologia,93:380–385, 2016.[39] J. Fan and I. Gijbels. Local Polynomial Modelling and Its Applications. Chapman& Hall/CRC, London, 1996.[40] C. Feng, A. Elazab, P. Yang, T. Wang, F. Zhou, H. Hu, X. Xiao, and B. Lei. Deeplearning framework forAlzheimer’s disease diagnosis via 3DCNNand FSBiLSTM.IEEE Access, 7:63605–63618, 2019.[41] A. Field, J. Miles, and Z. Field. Discovering statistics using R. Sage Publications,2012.[42] M. F. Folstein, S. E. Folstein, and P. R. McHugh. “Minimentalstate”: A practicalmethod for grading the cognitive state of patients for the clinician. Journal ofpsychiatric research, 12(3):189–198, 1975.[43] P. Forouzannezhad, A. Abbaspour, C. Fang, M. Cabrerizo, D. Loewenstein,R. Duara, and M. Adjouadi. A survey on applications and analysis methods offunctional magnetic resonance imaging for Alzheimer’s disease. Journal of neurosciencemethods, 317:121–140, 2019.[44] S. Förster, B. H. Yousefi, H.J.Wester, E. Klupp, A. Rominger, H. Förstl, A. Kurz,T. Grimmer, and A. Drzezga. Quantitative longitudinal interrelationships betweenbrain metabolism and amyloid deposition during a 2yearfollowupin patients withearly Alzheimer’s disease. European journal of nuclear medicine and molecularimaging, 39(12):1927–1936, 2012.[45] J. H. Friedman. Regularized discriminant analysis. Journal of the American StatisticalAssociation, 84(405):165–175, 1989.[46] A. Gajardo, C. Carroll, Y. Chen, X. Dai, J. Fan, P. Z. Hadjipantelis, K. Han, H. Ji,H.G.Müller, and J.L.Wang. fdapace: Functional Data Analysis and EmpiricalDynamics, 2021. R package version 0.5.7.[47] T. P. Garcia and K. Marder. Statistical approaches to longitudinal data analysis inneurodegenerative diseases: Huntington’s disease as a model. Current Neurologyand Neuroscience Reports, 17(2):1–9, 2017.[48] S. Gauthier, P. RosaNeto,J. A. Morais, C. Webster, et al. World Alzheimer report2021 Journeythrough the diagnosis of dementia. https://www.alzint.org/resource/world-alzheimer-report-2021/. Accessed: 20210928.[49] I. Gélinas, L. Gauthier, M. McIntyre, and S. Gauthier. Development of a functionalmeasure for persons with Alzheimer’s disease: the disability assessmentfor dementia. American Journal of Occupational Therapy, 53(5):471–481, 1999.[50] M. M. Ghazi, M. Nielsen, A. Pai, M. J. Cardoso, M. Modat, S. Ourselin,L. Sørensen, A. D. N. Initiative, et al. Training recurrent neural networks robustto incomplete data: Application to Alzheimer’s disease progression modeling.Medical Image Analysis, 53:39–46, 2019.[51] Y. Gupta, R. K. Lama, G.R.Kwon, M. W. Weiner, P. Aisen, M. Weiner, R. Petersen,C. R. Jack Jr, W. Jagust, J. Q. Trojanowki, et al. Prediction and classificationof Alzheimer’s disease based on combined features from apolipoproteinEgenotype,cerebrospinal fluid, MR, and FDGPETimaging biomarkers. Frontiers inComputational Neuroscience, 13:72, 2019.[52] Y. Gupta, K. H. Lee, K. Y. Choi, J. J. Lee, B. C. Kim, G. R. Kwon, N. R. C. forDementia, and A. D. N. Initiative. Early diagnosis of Alzheimer’s disease usingcombined features from voxelbasedmorphometry and cortical, subcortical, andhippocampus regions of MRI T1 brain images. PLoS One, 14(10):e0222446, 2019.[53] C. Happ and S. Greven. Multivariate functional principal component analysis fordata observed on different (dimensional) domains. Journal of the American StatisticalAssociation, 113(522):649–659, 2018.[54] C. HappKurz.Objectorientedsoftware for functional data. Journal of StatisticalSoftware, 93(5):1–38, 2020.[55] C. HappKurz.MFPCA: Multivariate Functional Principal Component Analysisfor Data Observed on Different Dimensional Domains, 2021. R package version1.39.[56] J. A. Hardy and G. A. Higgins. Alzheimer’s disease: The amyloid cascade hypothesis.Science, 256(5054):184–186, 1992.[57] K. Hasenstab, A. Scheffler, D. Telesca, C. A. Sugar, S. Jeste, C. DiStefano, andD. Şentürk. A multidimensionalfunctional principal components analysis of EEGdata. Biometrics, 73(3):999–1009, 2017.[58] T. Hastie. [Flexible Parsimonious Smoothing and Additive Modeling]: Discussion.Technometrics, 31(1):23–29, 1989.[59] T. Hastie, A. Buja, and R. Tibshirani. Penalized discriminant analysis. The Annalsof Statistics, 23(1):73–102, 1995.[60] T. Hastie, R. Tibshirani, and A. Buja. Flexible discriminant analysis by optimalscoring. Journal of the American Statistical Association, 89(428):1255–1270,1994.[61] S. Hochreiter and J. Schmidhuber. Long shorttermmemory. Neural Computation,9(8):1735–1780, 1997.[62] H. Hodkinson. Evaluation of a mental test score for assessment of mental impairmentin the elderly. Age and ageing, 1(4):233–238, 1972.[63] W. Huang, Y. Zhou, L. Tu, Z. Ba, J. Huang, N. Huang, and Y. Luo. TDP43:FromAlzheimer’s disease to limbicpredominantagerelatedTDP43encephalopathy.Frontiers in Molecular Neuroscience, 13:26, 2020.[64] S. Iddi, D. Li, P. S. Aisen, M. S. Rafii, W. K. Thompson, and M. C. Donohue.Predicting the course of Alzheimer’s progression. Brain Informatics, 6(1):1–18,2019.[65] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network trainingby reducing internal covariate shift. In International Conference on MachineLearning, pages 448–456. PMLR, 2015.[66] Z. Ismail, L. AgüeraOrtiz,H. Brodaty, A. Cieslak, J. Cummings, C. E. Fischer,S. Gauthier, Y. E. Geda, N. Herrmann, J. Kanji, et al. The Mild BehavioralImpairment Checklist (MBIC):A rating scale for neuropsychiatric symptoms inpredementiapopulations. Journal of Alzheimer’s disease, 56(3):929–938, 2017.[67] Z. Ismail, T. K. Rajji, and K. I. Shulman. Brief cognitive screening instruments: Anupdate. International Journal of Geriatric Psychiatry: A journal of the psychiatryof late life and allied sciences, 25(2):111–120, 2010.[68] C. R. Jack Jr, D. A. Bennett, K. Blennow, M. C. Carrillo, B. Dunn, S. B. Haeberlein,D. M. Holtzman, W. Jagust, F. Jessen, J. Karlawish, et al. NIAAAresearchframework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s &Dementia, 14(4):535–562, 2018.[69] C. R. Jack Jr, D. S. Knopman, W. J. Jagust, R. C. Petersen, M. W. Weiner, P. S.Aisen, L. M. Shaw, P. Vemuri, H. J. Wiste, S. D. Weigand, et al. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model ofdynamic biomarkers. The Lancet Neurology, 12(2):207–216, 2013.[70] C. R. Jack Jr, D. S. Knopman, W. J. Jagust, L. M. Shaw, P. S. Aisen, M. W. Weiner,R. C. Petersen, and J. Q. Trojanowski. Hypothetical model of dynamic biomarkersof the Alzheimer’s pathological cascade. The Lancet Neurology, 9(1):119–128,2010.[71] C. R. Jack Jr, P. Vemuri, H. J. Wiste, S. D. Weigand, P. S. Aisen, J. Q. Trojanowski,L. M. Shaw, M. A. Bernstein, R. C. Petersen, M. W. Weiner, et al. Evidence forordering of Alzheimer disease biomarkers. Archives of Neurology, 68(12):1526–1535, 2011.[72] J. Jacques and C. Preda. Modelbasedclustering for multivariate functional data.Computational Statistics & Data Analysis, 71:92–106, 2014.[73] C.R.Jiang, J. A. Aston, and J.L.Wang. A functional approach to deconvolvedynamic neuroimaging data. Journal of the American Statistical Association,111(513):1–13, 2016.[74] C.R.Jiang and L.H.Chen. Filteringbasedapproaches for functional data classification.Wiley Interdisciplinary Reviews: Computational Statistics, 12(4):e1490,2020.[75] M. Jo, S. Lee, Y.M.Jeon, S. Kim, Y. Kwon, and H.J.Kim. The role of TDP43propagation in neurodegenerative diseases: Integrating insights from clinical andexperimental studies. Experimental & Molecular Medicine, 52(10):1652–1662,2020.[76] K. A. Josephs, D. W. Dickson, N. Tosakulwong, S. D. Weigand, M. E. Murray,L. Petrucelli, A. M. Liesinger, M. L. Senjem, A. J. Spychalla, D. S. Knopman, et al. Rates of hippocampal atrophy and presence of postmortemTDP43in patients withAlzheimer’s disease: A longitudinal retrospective study. The Lancet Neurology,16(11):917–924, 2017.[77] N. Kandiah, A. Zhang, D. C. Bautista, E. Silva, S. K. S. Ting, A. Ng, and P. Assam.Early detection of dementia in multilingual populations: Visual CognitiveAssessment Test (VCAT). Journal of Neurology, Neurosurgery & Psychiatry,87(2):156–160, 2016.[78] K. Karhunen. Über lineare methoden in der wahrscheinlichkeitsrechnung. AnnalesAcademiae Scientiarum Fennicae. Series A. 1: MathematicaPhysica,37:1–79, 1947.[79] M. Khanzadeh, S. Chowdhury, M. Marufuzzaman, M. A. Tschopp, and L. Bian.Porosity prediction: Supervisedlearningof thermal history for direct laser deposition.Journal of manufacturing systems, 47:69–82, 2018.[80] H. Kim and H. Kim. Functional logistic regression with fused lasso penalty. Journalof Statistical Computation and Simulation, 88(15):2982–2999, 2018.[81] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization in proceedingsof the 3rd international conference on learning representations (san diego, ca).2015.[82] W. E. Klunk, H. Engler, A. Nordberg, Y. Wang, G. Blomqvist, D. P. Holt,M. Bergström, I. Savitcheva, G.F.Huang, S. Estrada, et al. Imaging brain amyloidin Alzheimer’s disease with Pittsburgh CompoundB.Annals of Neurology: OfficialJournal of the American Neurological Association and the Child NeurologySociety, 55(3):306–319, 2004.[83] P. Kokoszka and M. Reimherr. Introduction to Functional Data Analysis. Chapmanand Hall/CRC, Boca Raton, 2017.[84] M. Krzyśko, P. Nijkamp, W. Ratajczak, and W. Wołyński. Multidimensional economicindicators and multivariate functional principal component analysis (MFPCA)in a comparative study of countries’competitiveness. Journal of GeographicalSystems, 24:49–65, 2022.[85] J. K. Kueper, M. Speechley, and M. MonteroOdasso.The Alzheimer’s diseaseassessment scale–cognitive subscale (ADASCog):Modifications and responsivenessin predementiapopulations. A narrative review. Journal of Alzheimer’s Disease,63(2):423–444, 2018.[86] N. M. Laird and J. H. Ware. Randomeffectsmodels for longitudinal data. Biometrics,38:963–974, 1982.[87] K. L. Lanctôt, J. Amatniek, S. AncoliIsrael,S. E. Arnold, C. Ballard, J. CohenMansfield,Z. Ismail, C. Lyketsos, D. S. Miller, E. Musiek, et al. Neuropsychiatricsigns and symptoms of Alzheimer’s disease: New treatment paradigms.Alzheimer’s & Dementia: Translational Research & Clinical Interventions,3(3):440–449, 2017.[88] J. LanteroRodriguez,A. Snellman, A. L. Benedet, M. MilàAlomà,E. Camporesi,L. MontoliuGaya,N. J. Ashton, A. Vrillon, T. K. Karikari, J. D. Gispert, et al. Ptau235:A novel biomarker for staging preclinical Alzheimer’s disease. EMBOmolecular medicine, 13(12):e15098, 2021.[89] A. J. Larner. The usage of cognitive screening instruments: Test characteristics andsuspected diagnosis. In Cognitive Screening Instruments, pages 219–238. Springer,London, 2013.[90] C. Ledig, A. Schuh, R. Guerrero, R. A. Heckemann, and D. Rueckert. Structuralbrain imaging in Alzheimer’s disease and mild cognitive impairment: Biomarkeranalysis and shared morphometry database. Scientific reports, 8(1):1–16, 2018.[91] G. Lee, K. Nho, B. Kang, K.A.Sohn, and D. Kim. Predicting Alzheimer’s diseaseprogression using multimodaldeep learning approach. Scientific Reports,9(1):1–12, 2019.[92] J. C. Lee, S. J. Kim, S. Hong, and Y. Kim. Diagnosis of Alzheimer’s diseaseutilizing amyloid and tau as fluid biomarkers. Experimental & Molecular Medicine,51(5):1–10, 2019.[93] X. Leng and H.G.Müller. Classification using functional data analysis for temporalgene expression data. Bioinformatics, 22(1):68–76, 2006.[94] A. Li, F. Li, F. Elahifasaee, M. Liu, and L. Zhang. Hippocampal shape and asymmetryanalysis by cascaded convolutional neural networks for Alzheimer’s diseasediagnosis. Brain Imaging and Behavior, 15(5):2330–2339, 2021.[95] B. Li and Q. Yu. Classification of functional data: A segmentation approach. ComputationalStatistics & Data Analysis, 52(10):4790–4800, 2008.[96] C. Li, L. Xiao, and S. Luo. Fast covariance estimation for multivariate sparse functionaldata. Stat, 9(1):e245, 2020.[97] D. Li, S. Iddi, W. K. Thompson, M. C. Donohue, and A. D. N. Initiative. Bayesianlatent time joint mixed effect models for multicohort longitudinal data. StatisticalMethods in Medical Research, 28(3):835–845, 2019.[98] H. Li, T. Pan, Y. Li, S. Chen, and G. Li. Functional principal component analysis fornearinfraredspectral data: A case study on Tricholoma matsutakeis. InternationalJournal of Food Engineering, 16(8), 2020.[99] K. Li and S. Luo. Dynamic prediction of Alzheimer’s disease progression usingfeatures of multiple longitudinal outcomes and timetoeventdata. Statistics inMedicine, 38(24):4804–4818, 2019.[100] W. Li, X. Lin, and X. Chen. Detecting Alzheimer’s disease based on 4d fMRI: Anexploration under deep learning framework. Neurocomputing, 388:280–287, 2020.[101] X. Li, G. Qi, C. Yu, G. Lian, H. Zheng, S. Wu, T.F.Yuan, and D. Zhou. Corticalplasticity is correlated with cognitive improvement in Alzheimer’s diseasepatients after rTMS treatment. Brain Stimulation, 14(3):503–510, 2021.[102] M. P. Lichtenstein, P. Carriba, R. Masgrau, A. Pujol, and E. Galea. Staging antiinflammatorytherapy in Alzheimer’s disease. Frontiers in Aging Neuroscience,2:142, 2010.[103] W. Liggett, L. Cazares, and O. J. Semmes. A look at mass spectral measurement.Chance, 16(4):24–28, 2003.[104] N. Lin, J. Jiang, S. Guo, and M. Xiong. Functional principal component analysisand randomized sparse clustering algorithm for medical image analysis. PLoS One,10(7):e0132945, 2015.[105] M. Liu, D. Cheng, W. Yan, A. D. N. Initiative, et al. Classification of Alzheimer’sdisease by combination of convolutional and recurrent neural networks using FDGPETimages. Frontiers in Neuroinformatics, 12:35, 2018.[106] Y. Liu, L. Tan, H.F.Wang, Y. Liu, X.K.Hao, C.C.Tan, T. Jiang, B. Liu, D.Q.Zhang, and J.T.Yu. Multiple effect of APOE genotype on clinical and neuroimagingbiomarkers across Alzheimer’s disease spectrum. Molecular Neurobiology,53(7):4539–4547, 2016.[107] M. Loève. Fonctions aléatoires à décomposition orthogonale exponentielle. LaRevue Scientifique, 84:159–162, 1946.[108] Mayo Clinic Staff. Alzheimer’s stages: How the disease progresses.https://www.mayoclinic.org/diseases-conditions/alzheimers-disease/in-depth/alzheimers-stages/art-20048448. Accessed: 20211101.[109] M. Mehdipour Ghazi, M. Nielsen, A. Pai, M. Modat, M. Jorge Cardoso, S. Ourselin,and L. Sørensen. Robust parametric modeling of Alzheimer’s disease progression.NeuroImage, 225:117460, 2021.[110] S. A. Mofrad, A. J. Lundervold, A. Vik, and A. S. Lundervold. Cognitive and MRItrajectories for prediction of Alzheimer’s disease. Scientific Reports, 11(1):1–10,2021.[111] R. C. Mohs, D. Knopman, R. C. Petersen, S. H. Ferris, C. Ernesto, M. Grundman,M. Sano, L. Bieliauskas, D. Geldmacher, C. Clark, et al. Development of cognitiveinstruments for use in clinical trials of antidementia drugs: Additions to theAlzheimer’s disease assessment scale that broaden its scope. Alzheimer Diseaseand Associated Disorders, 1997.[112] M. Mojirsheibani and C. Shaw. Classification with incomplete functional covariates.Statistics & Probability Letters, 139:40–46, 2018.[113] A. Möller, G. Tutz, and J. Gertheiss. Random forests for functional covariates.Journal of Chemometrics, 30(12):715–725, 2016.[114] H.g.Müller. Functional modelling and classification of longitudinal data. ScandinavianJournal of Statistics, 32(2):223–240, 2005.[115] Z. S. Nasreddine, N. A. Phillips, V. Bédirian, S. Charbonneau, V. Whitehead,I. Collin, J. L. Cummings, and H. Chertkow. The Montreal Cognitive Assessment,MoCA: A brief screening tool for mild cognitive impairment. Journal of the AmericanGeriatrics Society, 53(4):695–699, 2005.[116] M. Nguyen, T. He, L. An, D. C. Alexander, J. Feng, B. T. Yeo, A. D. N. Initiative,et al. Predicting Alzheimer’s disease progression using deep recurrent neuralnetworks. NeuroImage, 222:117203, 2020.[117] NIH National Institute on Aging (NIA). How biomarkers help diagnose dementia.https://www.nia.nih.gov/health/how-biomarkers-help-diagnose-dementia#future_biomarkers. Accessed: 20220201.[118] NIH National Institute on Aging (NIA). How is alzheimer’s disease treated? https://www.nia.nih.gov/health/how-alzheimers-disease-treated. Accessed: 20220201.[119] M. B. T. Noor, N. Z. Zenia, M. S. Kaiser, S. A. Mamun, and M. Mahmud. Applicationof deep learning in detecting neurological disorders from magnetic resonanceimages: A survey on the detection of Alzheimer’s disease, Parkinson’s diseaseand schizophrenia. Brain Informatics, 7(1):1–21, 2020.[120] T. Noori, A. R. Dehpour, A. Sureda, E. SobarzoSanchez,and S. Shirooie. Roleof natural products for the treatment of Alzheimer’s disease. European Journal ofPharmacology, 898:173974, 2021.[121] H.J.Park, K. J. Friston, C. Pae, B. Park, and A. Razi. Dynamic effective connectivityin resting state fMRI. NeuroImage, 180:594–608, 2018.[122] Penn Medicine. The 7 stages of Alzheimer’s disease. https://www.pennmedicine.org/updates/blogs/neuroscience-blog/2019/november/stages-of-alzheimers.Accessed: 20211101.[123] R. C. Petersen. Alzheimer’s disease: Progress in prediction. The Lancet Neurology,9(1):4–5, 2010.[124] J. Pinheiro and D. Bates. Mixedeffectsmodels in S and SPLUS.Springer, NewYork, 2006.[125] J. Pinheiro, D. Bates, S. DebRoy, D. Sarkar, and R Core Team. nlme: Linear andNonlinear Mixed Effects Models, 2013. R package version 3.1153.[126] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.[127] J. R. Quinlan. C4.5: Programs for machine learning. Elsevier, 2014.[128] G. D. Rabinovici. Controversy and progress in Alzheimer’s disease —FDA approvalof Aducanumab. New England Journal of Medicine, 385(9):771–774, 2021.[129] J. Ramsay, G. Hooker, and S. Graves. Functional Data Analysis with R and MATLAB.Springer, New York, 2009.[130] J. Ramsay and B. W. Silverman. Functional Data Analysis (2 ed.). Springer, NewYork, 2005.[131] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio. Light gated recurrent unitsfor speech recognition. IEEE Transactions on Emerging Topics in ComputationalIntelligence, 2(2):92–102, 2018.[132] C. Reitz. Alzheimer’s disease and the amyloid cascade hypothesis: A critical review.International journal of Alzheimer’s disease, 2012:Article ID 369808, 11pages, 2012.[133] K. E. Roach, V. Pedoia, J. J. Lee, T. Popovic, T. M. Link, S. Majumdar, and R. B.Souza. Multivariate functional principal component analysis identifies waveformfeatures of gait biomechanics related to earlytomoderatehip osteoarthritis. Journalof Orthopaedic Research®, 39(8):1722–1731, 2021.[134] F. Rossi and N. Villa. Support vector machine for functional data classification.Neurocomputing, 69(79):730–742, 2006.[135] I. Saied, T. Arslan, and S. Chandran. Classification of Alzheimer’s disease usingRF signals and machine learning. IEEE Journal of Electromagnetics, RF andMicrowaves in Medicine and Biology, 6(1), 2022.[136] A. Sarica, R. Vasta, F. Novellino, M. G. Vaccaro, A. Cerasa, A. Quattrone, A. D. N.Initiative, et al. MRI asymmetry index of hippocampal subfields increases throughthe continuum from the mild cognitive impairment to the Alzheimer’s disease.Frontiers in Neuroscience, page 576, 2018.[137] S. W. Scheff, D. A. Price, F. A. Schmitt, M. A. Scheff, and E. J. Mufson. Synapticloss in the inferior temporal gyrus in mild cognitive impairment and alzheimer’sdisease. Journal of Alzheimer’s Disease, 24(3):547–557, 2011.[138] P. Scheltens, D. Leys, F. Barkhof, D. Huglo, H. Weinstein, P. Vermersch, M. Kuiper,M. Steinling, E. C. Wolters, and J. Valk. Atrophy of medial temporal lobes onMRI in ” probable” Alzheimer’s disease and normal ageing: Diagnostic value andneuropsychological correlates. Journal of Neurology, Neurosurgery & Psychiatry,55(10):967–972, 1992.[139] S. A. Sikkes, E. S. de LangedeKlerk, Y. A. Pijnenburg, F. Gillissen, R. Romkes,D. L. Knol, B. M. Uitdehaag, and P. Scheltens. A new informantbasedquestionnaire for instrumental activities of daily living in dementia. Alzheimer’s & Dementia,8(6):536–543, 2012.[140] A. Singleton, M. Farrer, J. Johnson, A. Singleton, S. Hague, J. Kachergus, M. Hulihan,T. Peuralinna, A. N. Dutra, S. Lincoln, et al. αsynucleinlocus triplicationcauses Parkinson’s disease. Science, 302(5646):841–842, 2003.[141] R. Smith, T. Mukerji, and T. Lupo. Correlating geologic and seismic data withunconventional resource production curves using machine learning. Geophysics,84(2):O39–O47, 2019.[142] T. A. Snijders and R. J. Bosker. Multilevel analysis: An introduction to basic andadvanced multilevel modeling (2 ed.). Sage Publications, London, 2011.[143] H. Sørensen, J. Goldsmith, and L. M. Sangalli. An introduction with medical applicationsto functional data analysis. Statistics in Medicine, 32(30):5222–5240,2013.[144] R. A. Sperling, P. S. Aisen, L. A. Beckett, D. A. Bennett, S. Craft, A. M. Fagan,T. Iwatsubo, C. R. Jack Jr, J. Kaye, T. J. Montine, et al. Toward definingthe preclinical stages of Alzheimer’s disease: Recommendations from the NationalInstitute on AgingAlzheimer’sAssociation workgroups on diagnostic guidelinesfor Alzheimer’s disease. Alzheimer’s & dementia, 7(3):280–292, 2011.[145] S. Srivastava, R. Ahmad, and S. K. Khare. Alzheimer’s disease and its treatmentby different approaches: A review. European Journal of Medicinal Chemistry,216:113320, 2021.[146] J. E. Storey, J. T. Rowland, D. A. Conforti, and H. G. Dickson. The Rowland universaldementia assessment scale (RUDAS): A multicultural cognitive assessmentscale. International Psychogeriatrics, 16(1):13–31, 2004.[147] Y. Su and C.C.J. Kuo. On extended long shorttermmemory and dependent bidirectionalrecurrent neural network. Neurocomputing, 356:151–161, 2019.[148] Taiwan Alzheimer Disease Association. 認識失智症. http://www.tada2002.org.tw/About/IsntDementia, 04 2021. Accessed: 20210928.[149] M. Tanveer, B. Richhariya, R. Khan, A. Rashid, P. Khanna, M. Prasad, and C. Lin.Machine learning techniques for the diagnosis of Alzheimer’s disease: A review.ACM Transactions on Multimedia Computing, Communications, and Applications(TOMM), 16(1s):1–35, 2020.[150] S. J. Teipel, W. Bayer, G. E. Alexander, Y. Zebuhr, D. Teichberg, L. Kulic, M. B.Schapiro, H.J.Möller, S. I. Rapoport, and H. Hampel. Progression of CorpusCallosum Atrophy in Alzheimer Disease. Archives of Neurology, 59(2):243–248,02 2002.[151] C. G. Thomas, R. A. Harshman, and R. S. Menon. Noise reduction in BOLDbasedfMRI using component analysis. Neuroimage, 17(3):1521–1537, 2002.[152] M. Torso, M. Bozzali, G. Zamboni, M. Jenkinson, S. A. Chance, and A. D. N.Initiative. Detection of Alzheimer’s disease using cortical diffusion tensor imaging.Human Brain Mapping, 42(4):967–977, 2021.[153] D. Tosun, Z. Demir, D. P. Veitch, D. Weintraub, P. Aisen, C. R. Jack Jr,W. J. Jagust, R. C. Petersen, A. J. Saykin, L. M. Shaw, et al. Contribution ofAlzheimer’s biomarkers and risk factors to cognitive impairment and decline acrossthe Alzheimer’s disease continuum. Alzheimer’s & Dementia, 2021.[154] G. Van Rossum and F. L. Drake Jr. Python reference manual. Centrum voorWiskunde en Informatica Amsterdam, 1995.[155] M. Vernooij, F. Pizzini, R. Schmidt, M. Smits, T. Yousry, N. Bargallo, G. Frisoni,S. Haller, and F. Barkhof. Dementia imaging in clinical practice: A europeanwidesurvey of 193 centres and conclusions by the ESNR working group. Neuroradiology,61(6):633–642, 2019.[156] R. Viviani, G. Grön, and M. Spitzer. Functional principal component analysis offMRI data. Human brain mapping, 24(2):109–129, 2005.[157] M. Walterfang, E. Luders, J. C. Looi, P. Rajagopalan, D. Velakoulis, P. M. Thompson,O. Lindberg, P. Östberg, L. E. Nordin, L. Svensson, et al. Shape analysis ofthe corpus callosum in Alzheimer’s disease and frontotemporal lobar degenerationsubtypes. Journal of Alzheimer’s Disease, 40(4):897–906, 2014.[158] J.L.Wang, J.M.Chiou, and H.G.Müller. Functional data analysis. Annual Reviewof Statistics and Its Application, 3:257–295, 2016.[159] L. Wang, Y. Zang, Y. He, M. Liang, X. Zhang, L. Tian, T. Wu, T. Jiang, and K. Li.Changes in hippocampal connectivity in the early stages of Alzheimer’s disease:Evidence from resting state fMRI. Neuroimage, 31(2):496–504, 2006.[160] Y. Wei, G. Xiao, H. Deng, H. Chen, M. Tong, G. Zhao, and Q. Liu. Hyperspectralimage classification using FPCAbasedkernel extreme learning machine. Optik,126(23):3942–3948, 2015.[161] R. K. Wong, Y. Li, and Z. Zhu. Partially linear functional additive models formultivariate functional data. Journal of the American Statistical Association,114(525):406–418, 2019.[162] World Health Organization. Dementia. https://www.who.int/news-room/fact-sheets/detail/dementia. Accessed: 2021-09-28.[163] World Health Organization. Dementia: a public health priority. https://www.who.int/publications/i/item/dementia-a-public-health-priority. Accessed: 2021-09-28.[164] World Health Organization. The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed: 2021-09-28.[165] Y. Wu and Y. Liu. Functional robust support vector machines for sparse andirregular longitudinal data. Journal of computational and Graphical Statistics,22(2):379–395, 2013.[166] S. Xie. Wavelet power spectral domain functional principal component analysis forfeature extraction of epileptic EEGs. Computation, 9(7):78, 2021.[167] F. Xue, F. Tan, Z. Ye, J. Chen, and Y. Wei. Spectralspatialclassification of hyperspectralimage using improved functional principal component analysis. IEEEGeoscience and Remote Sensing Letters, 19:1–5, 2021.[168] B. Yang, H. Yu, M. Xing, R. He, R. Liang, and L. Zhou. The relationship betweencognition and depressive symptoms, and factors modifying this association,in Alzheimer’s disease: A multivariate multilevel model. Archives of Gerontologyand Geriatrics, 72:25–31, 2017.[169] L. Yang, J. Yan, X. Jin, Y. Jin, W. Yu, S. Xu, and H. Wu. Screening for dementiain older adults: Comparison of MiniMentalState Examination, MiniCog,ClockDrawing Test and AD8. PLOS ONE, 11(12):1–9, 12 2016.[170] F. Yao, E. Lei, and Y. Wu. Effective dimension reduction for sparse functional data.Biometrika, 102(2):421–437, 2015.[171] F. Yao, H.G.Müller, and J.L.Wang. Functional data analysis for sparse longitudinaldata. Journal of the American statistical association, 100(470):577–590,2005.[172] F. Yao, Y. Wu, and J. Zou. Probabilityenhancedeffective dimension reduction forclassifying sparse functional data. Test, 25(1):1–22, 2016.[173] L. Zhang, M. Wang, M. Liu, and D. Zhang. A survey on deep learning forneuroimagingbasedbrain disorder analysis. Frontiers in Neuroscience, page 779,2020.[174] 台灣神經學學會Taiwan Neurological Society. 台灣神經學學會會訊2020 年01 月第80 期. http://www.neuro.org.tw/files/newsletter/080.pdf. Accessed:2021-09-28.[175] 衛生福利部Ministry of Health and Welfare. 失智症防治照護政策綱領暨行動方案2.0(含工作項目)(2021 年版). https://1966.gov.tw/LTC/cp-4020-42469-201.html. Accessed: 2021-09-28.[176] 衛生福利部中央健康保險署National Health Insurance Administration, Ministryof Health and Welfare. 最新版藥品給付規定內容第1 節神經系統藥物drugs acting on the nervous system. https://www.nhi.gov.tw/Content_List.aspx?n=E70D4F1BD029DC37&topn=5FE8C9FEAE863B46. Update: 20220224,Accessed: 2022-03-02.[177] 衛生福利部統計處Department of Statistics, Ministry of Health and Welfare.國際失智症日衛生福利統計通報. https://www.mohw.gov.tw/dl-71799-1d824fee-a486-4504-9c7d-5d819c6848b2.html. Accessed: 2021-09-28. 描述 博士
國立政治大學
統計學系
99354501資料來源 http://thesis.lib.nccu.edu.tw/record/#G0099354501 資料類型 thesis dc.contributor.advisor 劉惠美 zh_TW dc.contributor.advisor Liu, Hui-Mei en_US dc.contributor.author (Authors) 李詠玄 zh_TW dc.contributor.author (Authors) Lee, Yong-Shiuan en_US dc.creator (作者) 李詠玄 zh_TW dc.creator (作者) Lee, Yong-Shiuan en_US dc.date (日期) 2022 en_US dc.date.accessioned 1-Aug-2022 17:13:51 (UTC+8) - dc.date.available 1-Aug-2022 17:13:51 (UTC+8) - dc.date.issued (上傳時間) 1-Aug-2022 17:13:51 (UTC+8) - dc.identifier (Other Identifiers) G0099354501 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/141000 - dc.description (描述) 博士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 統計學系 zh_TW dc.description (描述) 99354501 zh_TW dc.description.abstract (摘要) 自二十世紀晚期對於探討阿茲海默症成因、病情發展與有效治療方式的研究大量增加。其中最重要的目標之一即為於早期診斷出阿茲海默症,也就是輕度認知障礙。診斷輕度認知障礙或阿茲海默症即是統計上的分類問題。通常阿茲海默症的相關研究資料皆為長期追蹤資料,由於資料收集的方式,使得資料多為稀疏性且不規則間隔的資料。再者,基於近年來醫學診斷工具,尤其是腦部顯影的技術進步與普及,阿茲海默症資料更常為具有高維度的資料。傳統上常用的統計分類方法對於此類資料型態有其侷限性。本研究首先將資料的變數視為只具有少數觀察值的函數,使用函數主成分分析工具來重建高維度、稀疏且不規則間隔的資料,使資料收集區間內的所有觀察時間點皆能有函數的估計值。接續再利用遞迴類神經網路中專門針對時間序列資料的長短期記憶類神經網路,來對研究對象做診斷的分類。本研究的實證結果指出在最佳情境下,此作法使用較多觀察值於訓練資料集,以及使用較多的輸入變數,能夠正確辨認出最多的早期輕度認知障礙者(十一個患者中正確辨認出五個)。顯示此法對於辨認早期的輕度認知障礙有較大的潛力。針對阿茲海默症此類醫學研究中常見的不平衡資料,未來可考慮加入重新採樣的方法或是成本考量的分類方法進一步發展優化本文所提出之程序。 zh_TW dc.description.abstract (摘要) Since the late 20th century, researches of Alzheimer’s disease intending to better understand the causes, the progression, and effective treatments of this disease have boosted. One of the most important purposes of these researches is to detect the disease at early stages, that is, the diagnosis of mild cognitive impairment. The diagnosis is certainly the classification problem in statistics. The research data of Alzheimer’s disease are usually longitudinal, which can be very sparse and irregularlyspaced as a result of data collection process. Additionally, the research data can also have high imensional features due to improvement in clinical neuroimaging techniques. Classical approaches for classification have limitations in using the sparse and irregular, highdimensional, longitudinal data. This study is the first to implement the tool of the functional principal component analysis to reconstruct the wholefunctions of all variables during the period, and then to apply the long shortterm memory networks, a recurrent neural network designed for time series data, for classification. The empirical results show that in the bestcase scenario this method identifies 5 out of 11 MCI cases in the testing dataset while the other methods only accurately predict 0 or 1 MCI case. The results suggest that this procedure has great potential for early detection of Alzheimer’s disease. The proposed method can further be developed for imbalanced data with resampling or costsensitive classification techniques. en_US dc.description.tableofcontents 誌謝 i摘要 iiAbstract ivContents viList of Figures viiiList of Tables xi1 Introduction 11.1 Dementia 21.2 Alzheimer’s Disease 61.3 Diagnosis of Alzheimer’s Disease 71.4 Treatment for Alzheimer’s disease 131.5 Outline of The Dissertation 142 Related Work 152.1 The Mixedeffects Model 162.2 Linear Discriminant Analysis and Related Methods 182.3 Functional Principal Component Analysis 202.3.1 Univariate FPCA 212.3.2 Multivariate FPCA 242.3.3 Application of FPCA to Medical data 262.4 Classification for Longitudinal Data 272.4.1 Functional Data Classification 272.4.2 Deep Learning Models 293 Analysis 313.1 Data Description 313.2 Multilevel Modeling for The Scores of MMSE and ADASCog13353.2.1 TwoLevel Mixed Effects Model With Demographic and Neuroimaging Variables 353.2.2 TwoLevel Mixed Effects Model Including Fixed Effect of Grouping by Final Status 393.3 Univariate Functional PCA of MidanteriorCorpus Callosum 413.4 Multivariate Functional PCA 493.4.1 Multivariate Functional PCA of Left and Right Hippocampus Volumes 493.4.2 Multivariate Functional PCA of Cognitive Assessment Scales and fMRI Variables 563.5 Classification 583.5.1 Classification by Flexible Discriminant Analysis and Regularized Discriminant Analysis 593.5.2 Classification by LSTM Using Features Reconstructed From FPCA 634 Discussion and Conclusions 69Reference 71Appendix A: Tables of the Twolevel Growth Models 94 zh_TW dc.format.extent 4503222 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0099354501 en_US dc.subject (關鍵詞) 阿茲海默症 zh_TW dc.subject (關鍵詞) 函數主成分分析 zh_TW dc.subject (關鍵詞) 遞迴類神經網路 zh_TW dc.subject (關鍵詞) 長短期記憶類神經網路 zh_TW dc.subject (關鍵詞) 長期追蹤資料 zh_TW dc.subject (關鍵詞) Alzheimer’s disease en_US dc.subject (關鍵詞) Functional principal component analysis en_US dc.subject (關鍵詞) Recurrent neural networks en_US dc.subject (關鍵詞) Long short-term memory networks en_US dc.subject (關鍵詞) Longitudinal data en_US dc.title (題名) 運用函數主成分分析於阿茲海默症之診斷 zh_TW dc.title (題名) Application of functional principal component analysis to diagnosis of Alzheimer’s disease en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) [1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,G. Irving, M. Isard, et al. Tensorflow: A system for largescalemachine learning.In 12th {USENIX} Symposium on Operating Systems Design and Implementation({OSDI} 16), pages 265–283, 2016.[2] A. Anoop, P. K. Singh, R. S. Jacob, and S. K. Maji. CSF biomarkers for Alzheimer’sdisease diagnosis. International journal of Alzheimer’s disease, 2010:Article ID606802, 12 pages, 2010.[3] A. Association. 2020 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia,16(3):391–460, 2020.[4] A. Association. 2021 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia,17(3):327–406, 2021.[5] S. Balakrishnan and D. Madigan. Decision trees for functional variables. In SixthInternational Conference on Data Mining (ICDM’06), pages 798–802. IEEE, 2006.[6] E. Belli and S. Vantini. Measure inducing classification and regression trees forfunctional data. Statistical Analysis and Data Mining: The ASA Data Science Journal,2021.[7] Y. Bengio. Learning deep architectures for AI. Foundations and Trends in SignalProcessing, 2(1):1–127, 2009.[8] J. R. Berrendero, A. Justel, and M. Svarc. Principal components for multivariatefunctional data. Computational Statistics & Data Analysis, 55(9):2619–2634, 2011.[9] M. Bertoux, J. Lagarde, F. Corlier, L. Hamelin, J.F.Mangin, O. Colliot, M. Chupin,M. N. Braskie, P. M. Thompson, M. Bottlaender, et al. Sulcal morphology inAlzheimer’s disease: An effective marker of diagnosis and cognition. Neurobiologyof Aging, 84:41–49, 2019.[10] M. C. Biagioni and J. E. Galvin. Using biomarkers to improve detection ofAlzheimer’s disease. Neurodegenerative Disease Management, 1(2):127–139,2011.[11] S. Borson, J. Scanlan, M. Brush, P. Vitaliano, and A. Dokmak. The MiniCog:Acognitive ‘vital signs’measure for dementia screening in multilingualelderly.International journal of geriatric psychiatry, 15(11):1021–1027, 2000.[12] S. Borson, J. M. Scanlan, P. Chen, and M. Ganguli. The MiniCogas a screenfor dementia: Validation in a populationbasedsample. Journal of the AmericanGeriatrics Society, 51(10):1451–1454, 2003.[13] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.[14] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.[15] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification andRegression Trees. Chapman & Hall/CRC, New York., 1984.[16] A. M. Brickman, J. J. Manly, L. S. Honig, D. Sanchez, D. ReyesDumeyer,R. A.Lantigua, P. J. Lao, Y. Stern, J. P. Vonsattel, A. F. Teich, et al. Plasma ptau181,ptau217,and other bloodbasedAlzheimer’s disease biomarkers in a multiethnic,community study. Alzheimer’s & Dementia, 17(8):1353–1364, 2021.[17] R. S. Bucks, D. Ashworth, G. Wilcock, and K. Siegfried. Assessment of activitiesof daily living in dementia: Development of the bristol activities of daily livingscale. Age and ageing, 25(2):113–120, 1996.[18] H. Buschke, G. Kuslansky, M. Katz, W. F. Stewart, M. J. Sliwinski, H. M. Eckholdt,and R. B. Lipton. Screening for dementia with the memory impairment screen.Neurology, 52(2):231–231, 1999.[19] B. D. Carpenter, C. Xiong, E. K. Porensky, M. M. Lee, P. J. Brown, M. Coats,D. Johnson, and J. C. Morris. Reaction to a dementia diagnosis in individuals withAlzheimer’s disease and mild cognitive impairment. Journal of the American GeriatricsSociety, 56(3):405–412, 2008.[20] L.H.Chen and C.R.Jiang. Multidimensionalfunctional principal componentanalysis. Statistics and Computing, 27(5):1181–1192, 2017.[21] W.C.Cheng, L.H.Chen, C.R.Jiang, Y.M.Deng, D.W.Wang, C.H.Lin, R. Jou,J.K.Wang, and Y.L.Wang. Sensible functional linear discriminant analysis effectivelydiscriminates enhanced Raman spectra of Mycobacterium species. AnalyticalChemistry, 93(5):2785–2792, 2021. PMID: 33480698.[22] R. Chin, A. Ng, K. Narasimhalu, and N. Kandiah. Utility of the AD8 as a selfratingtool for cognitive impairment in an Asian population. American Journal ofAlzheimer’s Disease & Other Dementias®, 28(3):284–288, 2013.[23] J.M.Chiou, Y.T.Chen, and Y.F.Yang. Multivariate functional principal componentanalysis: A normalization approach. Statistica Sinica, pages 1571–1596,2014.[24] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,and Y. Bengio. Learning phrase representations using RNN encoderdecoderforstatistical machine translation. In Proceedings of the 2014 Conference on EmpiricalMethods in Natural Language Processing (EMNLP), page 1724–1734. Associationfor Computational Linguistics (ACL), Oct. 2014.[25] S. H. Cho, S. Woo, C. Kim, H. J. Kim, H. Jang, B. C. Kim, S. E. Kim, S. J. Kim, J. P.Kim, Y. H. Jung, et al. Disease progression modelling from preclinical Alzheimer’s disease (AD) to AD dementia. Scientific reports, 11(1):1–10, 2021.[26] F. Chollet et al. Keras. urlhttps://github.com/fchollet/keras, 2015.[27] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrentneural networks on sequence modeling. arXiv preprint arXiv:1412.3555,2014.[28] M. Conceição, A. KroneMartins,and A. da Silva. FPCA emulation of cosmologicalsimulations. In 2021 IEEE 17th International Conference on eScience(eScience), pages 225–226. IEEE, 2021.[29] C. Cortes and V. Vapnik. Support vector machine. Machine Learning, 20(3):273–297, 1995.[30] R. Cui, M. Liu, A. D. N. Initiative, et al. RNNbasedlongitudinal analysis fordiagnosis of Alzheimer’s disease. Computerized Medical Imaging and Graphics,73:1–10, 2019.[31] J. M. Cuttler, E. Abdellah, Y. Goldberg, S. AlShamaa,S. P. Symons, S. E. Black,and M. Freedman. Low doses of ionizing radiation as a treatment for Alzheimer’s disease: A pilot study. Journal of Alzheimer’s Disease, 80(3):1119–1128, 2021.[32] A. Delaigle and P. Hall. Achieving near perfect classification for functionaldata. Journal of the Royal Statistical Society: Series B (Statistical Methodology),74(2):267–286, 2012.[33] A. Delaigle and P. Hall. Classification using censored functional data. Journal ofthe American Statistical Association, 108(504):1269–1283, 2013.[34] A. Delaigle, P. Hall, and N. Bathia. Componentwise classification and clusteringof functional data. Biometrika, 99(2):299–313, 2012.[35] L. Deng and D. Yu. Deep learning: Methods and applications. Foundations andTrends in Signal Processing, 7(3–4):197–387, 2014.[36] B. Dunn, P. Stein, and P. Cavazzoni. Approval of Aducanumab for Alzheimerdisease—The FDA’s perspective. JAMA Internal Medicine, 181(10):1276–1278,2021.[37] S. ElSappagh,T. Abuhmed, S. R. Islam, and K. S. Kwak. Multimodal multitaskdeep learning model for Alzheimer’s disease progression detection based on timeseries data. Neurocomputing, 412:197–215, 2020.[38] A. Ezzati, M. J. Katz, A. R. Zammit, M. L. Lipton, M. E. Zimmerman, M. J. Sliwinski,and R. B. Lipton. Differential association of left and right hippocampalvolumes with verbal episodic and spatial memory in older adults. Neuropsychologia,93:380–385, 2016.[39] J. Fan and I. Gijbels. Local Polynomial Modelling and Its Applications. Chapman& Hall/CRC, London, 1996.[40] C. Feng, A. Elazab, P. Yang, T. Wang, F. Zhou, H. Hu, X. Xiao, and B. Lei. Deeplearning framework forAlzheimer’s disease diagnosis via 3DCNNand FSBiLSTM.IEEE Access, 7:63605–63618, 2019.[41] A. Field, J. Miles, and Z. Field. Discovering statistics using R. Sage Publications,2012.[42] M. F. Folstein, S. E. Folstein, and P. R. McHugh. “Minimentalstate”: A practicalmethod for grading the cognitive state of patients for the clinician. Journal ofpsychiatric research, 12(3):189–198, 1975.[43] P. Forouzannezhad, A. Abbaspour, C. Fang, M. Cabrerizo, D. Loewenstein,R. Duara, and M. Adjouadi. A survey on applications and analysis methods offunctional magnetic resonance imaging for Alzheimer’s disease. Journal of neurosciencemethods, 317:121–140, 2019.[44] S. Förster, B. H. Yousefi, H.J.Wester, E. Klupp, A. Rominger, H. Förstl, A. Kurz,T. Grimmer, and A. Drzezga. Quantitative longitudinal interrelationships betweenbrain metabolism and amyloid deposition during a 2yearfollowupin patients withearly Alzheimer’s disease. European journal of nuclear medicine and molecularimaging, 39(12):1927–1936, 2012.[45] J. H. Friedman. Regularized discriminant analysis. Journal of the American StatisticalAssociation, 84(405):165–175, 1989.[46] A. Gajardo, C. Carroll, Y. Chen, X. Dai, J. Fan, P. Z. Hadjipantelis, K. Han, H. Ji,H.G.Müller, and J.L.Wang. fdapace: Functional Data Analysis and EmpiricalDynamics, 2021. R package version 0.5.7.[47] T. P. Garcia and K. Marder. Statistical approaches to longitudinal data analysis inneurodegenerative diseases: Huntington’s disease as a model. Current Neurologyand Neuroscience Reports, 17(2):1–9, 2017.[48] S. Gauthier, P. RosaNeto,J. A. Morais, C. Webster, et al. World Alzheimer report2021 Journeythrough the diagnosis of dementia. https://www.alzint.org/resource/world-alzheimer-report-2021/. Accessed: 20210928.[49] I. Gélinas, L. Gauthier, M. McIntyre, and S. Gauthier. Development of a functionalmeasure for persons with Alzheimer’s disease: the disability assessmentfor dementia. American Journal of Occupational Therapy, 53(5):471–481, 1999.[50] M. M. Ghazi, M. Nielsen, A. Pai, M. J. Cardoso, M. Modat, S. Ourselin,L. Sørensen, A. D. N. Initiative, et al. Training recurrent neural networks robustto incomplete data: Application to Alzheimer’s disease progression modeling.Medical Image Analysis, 53:39–46, 2019.[51] Y. Gupta, R. K. Lama, G.R.Kwon, M. W. Weiner, P. Aisen, M. Weiner, R. Petersen,C. R. Jack Jr, W. Jagust, J. Q. Trojanowki, et al. Prediction and classificationof Alzheimer’s disease based on combined features from apolipoproteinEgenotype,cerebrospinal fluid, MR, and FDGPETimaging biomarkers. Frontiers inComputational Neuroscience, 13:72, 2019.[52] Y. Gupta, K. H. Lee, K. Y. Choi, J. J. Lee, B. C. Kim, G. R. Kwon, N. R. C. forDementia, and A. D. N. Initiative. Early diagnosis of Alzheimer’s disease usingcombined features from voxelbasedmorphometry and cortical, subcortical, andhippocampus regions of MRI T1 brain images. PLoS One, 14(10):e0222446, 2019.[53] C. Happ and S. Greven. Multivariate functional principal component analysis fordata observed on different (dimensional) domains. Journal of the American StatisticalAssociation, 113(522):649–659, 2018.[54] C. HappKurz.Objectorientedsoftware for functional data. Journal of StatisticalSoftware, 93(5):1–38, 2020.[55] C. HappKurz.MFPCA: Multivariate Functional Principal Component Analysisfor Data Observed on Different Dimensional Domains, 2021. R package version1.39.[56] J. A. Hardy and G. A. Higgins. Alzheimer’s disease: The amyloid cascade hypothesis.Science, 256(5054):184–186, 1992.[57] K. Hasenstab, A. Scheffler, D. Telesca, C. A. Sugar, S. Jeste, C. DiStefano, andD. Şentürk. A multidimensionalfunctional principal components analysis of EEGdata. Biometrics, 73(3):999–1009, 2017.[58] T. Hastie. [Flexible Parsimonious Smoothing and Additive Modeling]: Discussion.Technometrics, 31(1):23–29, 1989.[59] T. Hastie, A. Buja, and R. Tibshirani. Penalized discriminant analysis. The Annalsof Statistics, 23(1):73–102, 1995.[60] T. Hastie, R. Tibshirani, and A. Buja. Flexible discriminant analysis by optimalscoring. Journal of the American Statistical Association, 89(428):1255–1270,1994.[61] S. Hochreiter and J. Schmidhuber. Long shorttermmemory. Neural Computation,9(8):1735–1780, 1997.[62] H. Hodkinson. Evaluation of a mental test score for assessment of mental impairmentin the elderly. Age and ageing, 1(4):233–238, 1972.[63] W. Huang, Y. Zhou, L. Tu, Z. Ba, J. Huang, N. Huang, and Y. Luo. TDP43:FromAlzheimer’s disease to limbicpredominantagerelatedTDP43encephalopathy.Frontiers in Molecular Neuroscience, 13:26, 2020.[64] S. Iddi, D. Li, P. S. Aisen, M. S. Rafii, W. K. Thompson, and M. C. Donohue.Predicting the course of Alzheimer’s progression. Brain Informatics, 6(1):1–18,2019.[65] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network trainingby reducing internal covariate shift. In International Conference on MachineLearning, pages 448–456. PMLR, 2015.[66] Z. Ismail, L. AgüeraOrtiz,H. Brodaty, A. Cieslak, J. Cummings, C. E. Fischer,S. Gauthier, Y. E. Geda, N. Herrmann, J. Kanji, et al. The Mild BehavioralImpairment Checklist (MBIC):A rating scale for neuropsychiatric symptoms inpredementiapopulations. Journal of Alzheimer’s disease, 56(3):929–938, 2017.[67] Z. Ismail, T. K. Rajji, and K. I. Shulman. Brief cognitive screening instruments: Anupdate. International Journal of Geriatric Psychiatry: A journal of the psychiatryof late life and allied sciences, 25(2):111–120, 2010.[68] C. R. Jack Jr, D. A. Bennett, K. Blennow, M. C. Carrillo, B. Dunn, S. B. Haeberlein,D. M. Holtzman, W. Jagust, F. Jessen, J. Karlawish, et al. NIAAAresearchframework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s &Dementia, 14(4):535–562, 2018.[69] C. R. Jack Jr, D. S. Knopman, W. J. Jagust, R. C. Petersen, M. W. Weiner, P. S.Aisen, L. M. Shaw, P. Vemuri, H. J. Wiste, S. D. Weigand, et al. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model ofdynamic biomarkers. The Lancet Neurology, 12(2):207–216, 2013.[70] C. R. Jack Jr, D. S. Knopman, W. J. Jagust, L. M. Shaw, P. S. Aisen, M. W. Weiner,R. C. Petersen, and J. Q. Trojanowski. Hypothetical model of dynamic biomarkersof the Alzheimer’s pathological cascade. The Lancet Neurology, 9(1):119–128,2010.[71] C. R. Jack Jr, P. Vemuri, H. J. Wiste, S. D. Weigand, P. S. Aisen, J. Q. Trojanowski,L. M. Shaw, M. A. Bernstein, R. C. Petersen, M. W. Weiner, et al. Evidence forordering of Alzheimer disease biomarkers. Archives of Neurology, 68(12):1526–1535, 2011.[72] J. Jacques and C. Preda. Modelbasedclustering for multivariate functional data.Computational Statistics & Data Analysis, 71:92–106, 2014.[73] C.R.Jiang, J. A. Aston, and J.L.Wang. A functional approach to deconvolvedynamic neuroimaging data. Journal of the American Statistical Association,111(513):1–13, 2016.[74] C.R.Jiang and L.H.Chen. Filteringbasedapproaches for functional data classification.Wiley Interdisciplinary Reviews: Computational Statistics, 12(4):e1490,2020.[75] M. Jo, S. Lee, Y.M.Jeon, S. Kim, Y. Kwon, and H.J.Kim. The role of TDP43propagation in neurodegenerative diseases: Integrating insights from clinical andexperimental studies. Experimental & Molecular Medicine, 52(10):1652–1662,2020.[76] K. A. Josephs, D. W. Dickson, N. Tosakulwong, S. D. Weigand, M. E. Murray,L. Petrucelli, A. M. Liesinger, M. L. Senjem, A. J. Spychalla, D. S. Knopman, et al. Rates of hippocampal atrophy and presence of postmortemTDP43in patients withAlzheimer’s disease: A longitudinal retrospective study. The Lancet Neurology,16(11):917–924, 2017.[77] N. Kandiah, A. Zhang, D. C. Bautista, E. Silva, S. K. S. Ting, A. Ng, and P. Assam.Early detection of dementia in multilingual populations: Visual CognitiveAssessment Test (VCAT). Journal of Neurology, Neurosurgery & Psychiatry,87(2):156–160, 2016.[78] K. Karhunen. Über lineare methoden in der wahrscheinlichkeitsrechnung. AnnalesAcademiae Scientiarum Fennicae. Series A. 1: MathematicaPhysica,37:1–79, 1947.[79] M. Khanzadeh, S. Chowdhury, M. Marufuzzaman, M. A. Tschopp, and L. Bian.Porosity prediction: Supervisedlearningof thermal history for direct laser deposition.Journal of manufacturing systems, 47:69–82, 2018.[80] H. Kim and H. Kim. Functional logistic regression with fused lasso penalty. Journalof Statistical Computation and Simulation, 88(15):2982–2999, 2018.[81] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization in proceedingsof the 3rd international conference on learning representations (san diego, ca).2015.[82] W. E. Klunk, H. Engler, A. Nordberg, Y. Wang, G. Blomqvist, D. P. Holt,M. Bergström, I. Savitcheva, G.F.Huang, S. Estrada, et al. Imaging brain amyloidin Alzheimer’s disease with Pittsburgh CompoundB.Annals of Neurology: OfficialJournal of the American Neurological Association and the Child NeurologySociety, 55(3):306–319, 2004.[83] P. Kokoszka and M. Reimherr. Introduction to Functional Data Analysis. Chapmanand Hall/CRC, Boca Raton, 2017.[84] M. Krzyśko, P. Nijkamp, W. Ratajczak, and W. Wołyński. Multidimensional economicindicators and multivariate functional principal component analysis (MFPCA)in a comparative study of countries’competitiveness. Journal of GeographicalSystems, 24:49–65, 2022.[85] J. K. Kueper, M. Speechley, and M. MonteroOdasso.The Alzheimer’s diseaseassessment scale–cognitive subscale (ADASCog):Modifications and responsivenessin predementiapopulations. A narrative review. Journal of Alzheimer’s Disease,63(2):423–444, 2018.[86] N. M. Laird and J. H. Ware. Randomeffectsmodels for longitudinal data. Biometrics,38:963–974, 1982.[87] K. L. Lanctôt, J. Amatniek, S. AncoliIsrael,S. E. Arnold, C. Ballard, J. CohenMansfield,Z. Ismail, C. Lyketsos, D. S. Miller, E. Musiek, et al. Neuropsychiatricsigns and symptoms of Alzheimer’s disease: New treatment paradigms.Alzheimer’s & Dementia: Translational Research & Clinical Interventions,3(3):440–449, 2017.[88] J. LanteroRodriguez,A. Snellman, A. L. Benedet, M. MilàAlomà,E. Camporesi,L. MontoliuGaya,N. J. Ashton, A. Vrillon, T. K. Karikari, J. D. Gispert, et al. Ptau235:A novel biomarker for staging preclinical Alzheimer’s disease. EMBOmolecular medicine, 13(12):e15098, 2021.[89] A. J. Larner. The usage of cognitive screening instruments: Test characteristics andsuspected diagnosis. In Cognitive Screening Instruments, pages 219–238. Springer,London, 2013.[90] C. Ledig, A. Schuh, R. Guerrero, R. A. Heckemann, and D. Rueckert. Structuralbrain imaging in Alzheimer’s disease and mild cognitive impairment: Biomarkeranalysis and shared morphometry database. Scientific reports, 8(1):1–16, 2018.[91] G. Lee, K. Nho, B. Kang, K.A.Sohn, and D. Kim. Predicting Alzheimer’s diseaseprogression using multimodaldeep learning approach. Scientific Reports,9(1):1–12, 2019.[92] J. C. Lee, S. J. Kim, S. Hong, and Y. Kim. Diagnosis of Alzheimer’s diseaseutilizing amyloid and tau as fluid biomarkers. Experimental & Molecular Medicine,51(5):1–10, 2019.[93] X. Leng and H.G.Müller. Classification using functional data analysis for temporalgene expression data. Bioinformatics, 22(1):68–76, 2006.[94] A. Li, F. Li, F. Elahifasaee, M. Liu, and L. Zhang. Hippocampal shape and asymmetryanalysis by cascaded convolutional neural networks for Alzheimer’s diseasediagnosis. Brain Imaging and Behavior, 15(5):2330–2339, 2021.[95] B. Li and Q. Yu. Classification of functional data: A segmentation approach. ComputationalStatistics & Data Analysis, 52(10):4790–4800, 2008.[96] C. Li, L. Xiao, and S. Luo. Fast covariance estimation for multivariate sparse functionaldata. Stat, 9(1):e245, 2020.[97] D. Li, S. Iddi, W. K. Thompson, M. C. Donohue, and A. D. N. Initiative. Bayesianlatent time joint mixed effect models for multicohort longitudinal data. StatisticalMethods in Medical Research, 28(3):835–845, 2019.[98] H. Li, T. Pan, Y. Li, S. Chen, and G. Li. Functional principal component analysis fornearinfraredspectral data: A case study on Tricholoma matsutakeis. InternationalJournal of Food Engineering, 16(8), 2020.[99] K. Li and S. Luo. Dynamic prediction of Alzheimer’s disease progression usingfeatures of multiple longitudinal outcomes and timetoeventdata. Statistics inMedicine, 38(24):4804–4818, 2019.[100] W. Li, X. Lin, and X. Chen. Detecting Alzheimer’s disease based on 4d fMRI: Anexploration under deep learning framework. Neurocomputing, 388:280–287, 2020.[101] X. Li, G. Qi, C. Yu, G. Lian, H. Zheng, S. Wu, T.F.Yuan, and D. Zhou. Corticalplasticity is correlated with cognitive improvement in Alzheimer’s diseasepatients after rTMS treatment. Brain Stimulation, 14(3):503–510, 2021.[102] M. P. Lichtenstein, P. Carriba, R. Masgrau, A. Pujol, and E. Galea. Staging antiinflammatorytherapy in Alzheimer’s disease. Frontiers in Aging Neuroscience,2:142, 2010.[103] W. Liggett, L. Cazares, and O. J. Semmes. A look at mass spectral measurement.Chance, 16(4):24–28, 2003.[104] N. Lin, J. Jiang, S. Guo, and M. Xiong. Functional principal component analysisand randomized sparse clustering algorithm for medical image analysis. PLoS One,10(7):e0132945, 2015.[105] M. Liu, D. Cheng, W. Yan, A. D. N. Initiative, et al. Classification of Alzheimer’sdisease by combination of convolutional and recurrent neural networks using FDGPETimages. Frontiers in Neuroinformatics, 12:35, 2018.[106] Y. Liu, L. Tan, H.F.Wang, Y. Liu, X.K.Hao, C.C.Tan, T. Jiang, B. Liu, D.Q.Zhang, and J.T.Yu. Multiple effect of APOE genotype on clinical and neuroimagingbiomarkers across Alzheimer’s disease spectrum. Molecular Neurobiology,53(7):4539–4547, 2016.[107] M. Loève. Fonctions aléatoires à décomposition orthogonale exponentielle. LaRevue Scientifique, 84:159–162, 1946.[108] Mayo Clinic Staff. Alzheimer’s stages: How the disease progresses.https://www.mayoclinic.org/diseases-conditions/alzheimers-disease/in-depth/alzheimers-stages/art-20048448. Accessed: 20211101.[109] M. Mehdipour Ghazi, M. Nielsen, A. Pai, M. Modat, M. Jorge Cardoso, S. Ourselin,and L. Sørensen. Robust parametric modeling of Alzheimer’s disease progression.NeuroImage, 225:117460, 2021.[110] S. A. Mofrad, A. J. Lundervold, A. Vik, and A. S. Lundervold. Cognitive and MRItrajectories for prediction of Alzheimer’s disease. Scientific Reports, 11(1):1–10,2021.[111] R. C. Mohs, D. Knopman, R. C. Petersen, S. H. Ferris, C. Ernesto, M. Grundman,M. Sano, L. Bieliauskas, D. Geldmacher, C. Clark, et al. Development of cognitiveinstruments for use in clinical trials of antidementia drugs: Additions to theAlzheimer’s disease assessment scale that broaden its scope. Alzheimer Diseaseand Associated Disorders, 1997.[112] M. Mojirsheibani and C. Shaw. Classification with incomplete functional covariates.Statistics & Probability Letters, 139:40–46, 2018.[113] A. Möller, G. Tutz, and J. Gertheiss. Random forests for functional covariates.Journal of Chemometrics, 30(12):715–725, 2016.[114] H.g.Müller. Functional modelling and classification of longitudinal data. ScandinavianJournal of Statistics, 32(2):223–240, 2005.[115] Z. S. Nasreddine, N. A. Phillips, V. Bédirian, S. Charbonneau, V. Whitehead,I. Collin, J. L. Cummings, and H. Chertkow. The Montreal Cognitive Assessment,MoCA: A brief screening tool for mild cognitive impairment. Journal of the AmericanGeriatrics Society, 53(4):695–699, 2005.[116] M. Nguyen, T. He, L. An, D. C. Alexander, J. Feng, B. T. Yeo, A. D. N. Initiative,et al. Predicting Alzheimer’s disease progression using deep recurrent neuralnetworks. NeuroImage, 222:117203, 2020.[117] NIH National Institute on Aging (NIA). How biomarkers help diagnose dementia.https://www.nia.nih.gov/health/how-biomarkers-help-diagnose-dementia#future_biomarkers. Accessed: 20220201.[118] NIH National Institute on Aging (NIA). How is alzheimer’s disease treated? https://www.nia.nih.gov/health/how-alzheimers-disease-treated. Accessed: 20220201.[119] M. B. T. Noor, N. Z. Zenia, M. S. Kaiser, S. A. Mamun, and M. Mahmud. Applicationof deep learning in detecting neurological disorders from magnetic resonanceimages: A survey on the detection of Alzheimer’s disease, Parkinson’s diseaseand schizophrenia. Brain Informatics, 7(1):1–21, 2020.[120] T. Noori, A. R. Dehpour, A. Sureda, E. SobarzoSanchez,and S. Shirooie. Roleof natural products for the treatment of Alzheimer’s disease. European Journal ofPharmacology, 898:173974, 2021.[121] H.J.Park, K. J. Friston, C. Pae, B. Park, and A. Razi. Dynamic effective connectivityin resting state fMRI. NeuroImage, 180:594–608, 2018.[122] Penn Medicine. The 7 stages of Alzheimer’s disease. https://www.pennmedicine.org/updates/blogs/neuroscience-blog/2019/november/stages-of-alzheimers.Accessed: 20211101.[123] R. C. Petersen. Alzheimer’s disease: Progress in prediction. The Lancet Neurology,9(1):4–5, 2010.[124] J. Pinheiro and D. Bates. Mixedeffectsmodels in S and SPLUS.Springer, NewYork, 2006.[125] J. Pinheiro, D. Bates, S. DebRoy, D. Sarkar, and R Core Team. nlme: Linear andNonlinear Mixed Effects Models, 2013. R package version 3.1153.[126] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.[127] J. R. Quinlan. C4.5: Programs for machine learning. Elsevier, 2014.[128] G. D. Rabinovici. Controversy and progress in Alzheimer’s disease —FDA approvalof Aducanumab. New England Journal of Medicine, 385(9):771–774, 2021.[129] J. Ramsay, G. Hooker, and S. Graves. Functional Data Analysis with R and MATLAB.Springer, New York, 2009.[130] J. Ramsay and B. W. Silverman. Functional Data Analysis (2 ed.). Springer, NewYork, 2005.[131] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio. Light gated recurrent unitsfor speech recognition. IEEE Transactions on Emerging Topics in ComputationalIntelligence, 2(2):92–102, 2018.[132] C. Reitz. Alzheimer’s disease and the amyloid cascade hypothesis: A critical review.International journal of Alzheimer’s disease, 2012:Article ID 369808, 11pages, 2012.[133] K. E. Roach, V. Pedoia, J. J. Lee, T. Popovic, T. M. Link, S. Majumdar, and R. B.Souza. Multivariate functional principal component analysis identifies waveformfeatures of gait biomechanics related to earlytomoderatehip osteoarthritis. Journalof Orthopaedic Research®, 39(8):1722–1731, 2021.[134] F. Rossi and N. Villa. Support vector machine for functional data classification.Neurocomputing, 69(79):730–742, 2006.[135] I. Saied, T. Arslan, and S. Chandran. Classification of Alzheimer’s disease usingRF signals and machine learning. IEEE Journal of Electromagnetics, RF andMicrowaves in Medicine and Biology, 6(1), 2022.[136] A. Sarica, R. Vasta, F. Novellino, M. G. Vaccaro, A. Cerasa, A. Quattrone, A. D. N.Initiative, et al. MRI asymmetry index of hippocampal subfields increases throughthe continuum from the mild cognitive impairment to the Alzheimer’s disease.Frontiers in Neuroscience, page 576, 2018.[137] S. W. Scheff, D. A. Price, F. A. Schmitt, M. A. Scheff, and E. J. Mufson. Synapticloss in the inferior temporal gyrus in mild cognitive impairment and alzheimer’sdisease. Journal of Alzheimer’s Disease, 24(3):547–557, 2011.[138] P. Scheltens, D. Leys, F. Barkhof, D. Huglo, H. Weinstein, P. Vermersch, M. Kuiper,M. Steinling, E. C. Wolters, and J. Valk. Atrophy of medial temporal lobes onMRI in ” probable” Alzheimer’s disease and normal ageing: Diagnostic value andneuropsychological correlates. Journal of Neurology, Neurosurgery & Psychiatry,55(10):967–972, 1992.[139] S. A. Sikkes, E. S. de LangedeKlerk, Y. A. Pijnenburg, F. Gillissen, R. Romkes,D. L. Knol, B. M. Uitdehaag, and P. Scheltens. A new informantbasedquestionnaire for instrumental activities of daily living in dementia. Alzheimer’s & Dementia,8(6):536–543, 2012.[140] A. Singleton, M. Farrer, J. Johnson, A. Singleton, S. Hague, J. Kachergus, M. Hulihan,T. Peuralinna, A. N. Dutra, S. Lincoln, et al. αsynucleinlocus triplicationcauses Parkinson’s disease. Science, 302(5646):841–842, 2003.[141] R. Smith, T. Mukerji, and T. Lupo. Correlating geologic and seismic data withunconventional resource production curves using machine learning. Geophysics,84(2):O39–O47, 2019.[142] T. A. Snijders and R. J. Bosker. Multilevel analysis: An introduction to basic andadvanced multilevel modeling (2 ed.). Sage Publications, London, 2011.[143] H. Sørensen, J. Goldsmith, and L. M. Sangalli. An introduction with medical applicationsto functional data analysis. Statistics in Medicine, 32(30):5222–5240,2013.[144] R. A. Sperling, P. S. Aisen, L. A. Beckett, D. A. Bennett, S. Craft, A. M. Fagan,T. Iwatsubo, C. R. Jack Jr, J. Kaye, T. J. Montine, et al. Toward definingthe preclinical stages of Alzheimer’s disease: Recommendations from the NationalInstitute on AgingAlzheimer’sAssociation workgroups on diagnostic guidelinesfor Alzheimer’s disease. Alzheimer’s & dementia, 7(3):280–292, 2011.[145] S. Srivastava, R. Ahmad, and S. K. Khare. Alzheimer’s disease and its treatmentby different approaches: A review. European Journal of Medicinal Chemistry,216:113320, 2021.[146] J. E. Storey, J. T. Rowland, D. A. Conforti, and H. G. Dickson. The Rowland universaldementia assessment scale (RUDAS): A multicultural cognitive assessmentscale. International Psychogeriatrics, 16(1):13–31, 2004.[147] Y. Su and C.C.J. Kuo. On extended long shorttermmemory and dependent bidirectionalrecurrent neural network. Neurocomputing, 356:151–161, 2019.[148] Taiwan Alzheimer Disease Association. 認識失智症. http://www.tada2002.org.tw/About/IsntDementia, 04 2021. Accessed: 20210928.[149] M. Tanveer, B. Richhariya, R. Khan, A. Rashid, P. Khanna, M. Prasad, and C. Lin.Machine learning techniques for the diagnosis of Alzheimer’s disease: A review.ACM Transactions on Multimedia Computing, Communications, and Applications(TOMM), 16(1s):1–35, 2020.[150] S. J. Teipel, W. Bayer, G. E. Alexander, Y. Zebuhr, D. Teichberg, L. Kulic, M. B.Schapiro, H.J.Möller, S. I. Rapoport, and H. Hampel. Progression of CorpusCallosum Atrophy in Alzheimer Disease. Archives of Neurology, 59(2):243–248,02 2002.[151] C. G. Thomas, R. A. Harshman, and R. S. Menon. Noise reduction in BOLDbasedfMRI using component analysis. Neuroimage, 17(3):1521–1537, 2002.[152] M. Torso, M. Bozzali, G. Zamboni, M. Jenkinson, S. A. Chance, and A. D. N.Initiative. Detection of Alzheimer’s disease using cortical diffusion tensor imaging.Human Brain Mapping, 42(4):967–977, 2021.[153] D. Tosun, Z. Demir, D. P. Veitch, D. Weintraub, P. Aisen, C. R. Jack Jr,W. J. Jagust, R. C. Petersen, A. J. Saykin, L. M. Shaw, et al. Contribution ofAlzheimer’s biomarkers and risk factors to cognitive impairment and decline acrossthe Alzheimer’s disease continuum. Alzheimer’s & Dementia, 2021.[154] G. Van Rossum and F. L. Drake Jr. Python reference manual. Centrum voorWiskunde en Informatica Amsterdam, 1995.[155] M. Vernooij, F. Pizzini, R. Schmidt, M. Smits, T. Yousry, N. Bargallo, G. Frisoni,S. Haller, and F. Barkhof. Dementia imaging in clinical practice: A europeanwidesurvey of 193 centres and conclusions by the ESNR working group. Neuroradiology,61(6):633–642, 2019.[156] R. Viviani, G. Grön, and M. Spitzer. Functional principal component analysis offMRI data. Human brain mapping, 24(2):109–129, 2005.[157] M. Walterfang, E. Luders, J. C. Looi, P. Rajagopalan, D. Velakoulis, P. M. Thompson,O. Lindberg, P. Östberg, L. E. Nordin, L. Svensson, et al. Shape analysis ofthe corpus callosum in Alzheimer’s disease and frontotemporal lobar degenerationsubtypes. Journal of Alzheimer’s Disease, 40(4):897–906, 2014.[158] J.L.Wang, J.M.Chiou, and H.G.Müller. Functional data analysis. Annual Reviewof Statistics and Its Application, 3:257–295, 2016.[159] L. Wang, Y. Zang, Y. He, M. Liang, X. Zhang, L. Tian, T. Wu, T. Jiang, and K. Li.Changes in hippocampal connectivity in the early stages of Alzheimer’s disease:Evidence from resting state fMRI. Neuroimage, 31(2):496–504, 2006.[160] Y. Wei, G. Xiao, H. Deng, H. Chen, M. Tong, G. Zhao, and Q. Liu. Hyperspectralimage classification using FPCAbasedkernel extreme learning machine. Optik,126(23):3942–3948, 2015.[161] R. K. Wong, Y. Li, and Z. Zhu. Partially linear functional additive models formultivariate functional data. Journal of the American Statistical Association,114(525):406–418, 2019.[162] World Health Organization. Dementia. https://www.who.int/news-room/fact-sheets/detail/dementia. Accessed: 2021-09-28.[163] World Health Organization. Dementia: a public health priority. https://www.who.int/publications/i/item/dementia-a-public-health-priority. Accessed: 2021-09-28.[164] World Health Organization. The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed: 2021-09-28.[165] Y. Wu and Y. Liu. Functional robust support vector machines for sparse andirregular longitudinal data. Journal of computational and Graphical Statistics,22(2):379–395, 2013.[166] S. Xie. Wavelet power spectral domain functional principal component analysis forfeature extraction of epileptic EEGs. Computation, 9(7):78, 2021.[167] F. Xue, F. Tan, Z. Ye, J. Chen, and Y. Wei. Spectralspatialclassification of hyperspectralimage using improved functional principal component analysis. IEEEGeoscience and Remote Sensing Letters, 19:1–5, 2021.[168] B. Yang, H. Yu, M. Xing, R. He, R. Liang, and L. Zhou. The relationship betweencognition and depressive symptoms, and factors modifying this association,in Alzheimer’s disease: A multivariate multilevel model. Archives of Gerontologyand Geriatrics, 72:25–31, 2017.[169] L. Yang, J. Yan, X. Jin, Y. Jin, W. Yu, S. Xu, and H. Wu. Screening for dementiain older adults: Comparison of MiniMentalState Examination, MiniCog,ClockDrawing Test and AD8. PLOS ONE, 11(12):1–9, 12 2016.[170] F. Yao, E. Lei, and Y. Wu. Effective dimension reduction for sparse functional data.Biometrika, 102(2):421–437, 2015.[171] F. Yao, H.G.Müller, and J.L.Wang. Functional data analysis for sparse longitudinaldata. Journal of the American statistical association, 100(470):577–590,2005.[172] F. Yao, Y. Wu, and J. Zou. Probabilityenhancedeffective dimension reduction forclassifying sparse functional data. Test, 25(1):1–22, 2016.[173] L. Zhang, M. Wang, M. Liu, and D. Zhang. A survey on deep learning forneuroimagingbasedbrain disorder analysis. Frontiers in Neuroscience, page 779,2020.[174] 台灣神經學學會Taiwan Neurological Society. 台灣神經學學會會訊2020 年01 月第80 期. http://www.neuro.org.tw/files/newsletter/080.pdf. Accessed:2021-09-28.[175] 衛生福利部Ministry of Health and Welfare. 失智症防治照護政策綱領暨行動方案2.0(含工作項目)(2021 年版). https://1966.gov.tw/LTC/cp-4020-42469-201.html. Accessed: 2021-09-28.[176] 衛生福利部中央健康保險署National Health Insurance Administration, Ministryof Health and Welfare. 最新版藥品給付規定內容第1 節神經系統藥物drugs acting on the nervous system. https://www.nhi.gov.tw/Content_List.aspx?n=E70D4F1BD029DC37&topn=5FE8C9FEAE863B46. Update: 20220224,Accessed: 2022-03-02.[177] 衛生福利部統計處Department of Statistics, Ministry of Health and Welfare.國際失智症日衛生福利統計通報. https://www.mohw.gov.tw/dl-71799-1d824fee-a486-4504-9c7d-5d819c6848b2.html. Accessed: 2021-09-28. zh_TW dc.identifier.doi (DOI) 10.6814/NCCU202201025 en_US