Publications-Theses
Article View/Open
Publication Export
-
題名 基於增強學習的直播電商推薦系統
Reinforcement learning based live streaming e-commerce recommender system作者 唐思琪
Tang, Szu-Chi貢獻者 林怡伶
Ling, Yi-Lin
唐思琪
Tang, Szu-Chi關鍵詞 直播電商
推薦系統
強化學習
探索與利用之權衡
神經網路
Live commerce
Live streaming
E-commerce
Recommender system
Recommendation system
Multi-armed bandit
Reinforcement learning
User context
Uncertainty
Exploitation-exploration trade-off
Gated Recurrent Unit
Variational Autoencoder
Bayesian neural networks日期 2022 上傳時間 1-Aug-2022 17:20:44 (UTC+8) 摘要 近年來,直播電商逐漸受到重視。不同於傳統的電商和單向推播的電視購物,直播電商更加強調即時互動性。由於開設直播的成本低,直播主發起直播的頻率很高、商品也是不斷推成出新,這些都促成了複雜且快速變動的環境,而推薦系統能夠幫助消費者在資訊爆炸的情況下快速做出決定。過往的推薦系統研究注重於準確率的最佳化,不只引發了同溫層效應,更因為總是推薦類似的商品,長期下來導致消費者的不滿意以及流失。為了在精準推薦與探索新喜好的取捨中獲得較好的平衡,我們將此議題看作是一個具備使用者情境的多臂吃角子老虎機問題。此研究在直播電商這種新的商業情境下,提出一個基於強化學習的推薦系統。它能夠通過靜態的顧客特徵以及具時序性的顧客特徵,找出顧客、直播主以及商品之間的關係。我們使用了一種循環神經網路——門基循環單元,來找出顧客隨時間變化的喜好。我們的直播電商推薦系統能夠藉由變分自動變碼器來模糊化顧客的特徵,並在推薦商品的過程中利用貝葉斯神經網路來引入不確定性,來達成控制探索顧客喜好與利用的平衡。據我們所知,我們是第一個提出以基於神經網路的上下文吃角子老虎機演算法,來解決直播電商平台環境下推薦問題的研究。我們比較了經典的多臂吃餃子老虎機演算法,並透過真實世界資料的實驗來初步驗證了我們的理論,並且展示了其在商業實務問題中的潛在應用。
In recent years, live stream e-commerce shopping has received extensive attention from e-commerce businesses and streaming platforms. Different from traditional TV shopping and online shopping, the emerging products roll out continuously on the live stream shopping platform where users and streamers interact and synchronize in real-time. Such a dynamic environment forms a complex user context. The recommender system plays a crucial role in assisting users in information-seeking tasks and decision-making from information overload. Previous recommender systems mainly focus on optimizing accuracy, which results in filter bubbles problem and high churn rates in the long run. To balance exploration and exploitation (EE) trade-off under a dynamic and fast-changing recommendation context, the research formulates the problem as a contextual bandit problem. This study provides a reinforcement learning (RL)-based solution for a new business scenario (i.e., live stream e-commerce) which addresses three relationships between customers, streamers, and products in both static and temporal user contexts. We use Gated Recurrent Unit (GRU) to model the context changes in users` preferences in streamers and products while maintaining their long-term engagement. By encoded uncertainty in neural networks with Variational Autoencoder (VAE) for user modeling and Bayesian Neural Network (BNN) for a product recommendation, the proposed Live E-commerce Recommender System (LERS) can control the balance of EE trade-off. To the best of our knowledge, our study is the first neural network-based contextual bandit algorithm dealing with the recommendation problem in the live streaming e-commerce platforms. We compared our algorithm with classic multi-armed bandit algorithms including UCB1, LinUCB, Exp3, and NeuralUCB. Preliminary experiment results on real-world data corroborate our theory and shed light on potential applications of our algorithm to real-world business problems.參考文獻 Allesiardo, R., Féraud, R., & Bouneffouf, D. (2014). A neural networks committee for the contextual bandit problem. In Processings of the international conference on neural information processing (Vol. 8834, pp. 374–381). doi: 10.1007/978-3-319 -12637-1_47Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-offs. Ma- chine Learning Research, 3(Nov), 397–422.Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the mul- tiarmed bandit problem. Machine learning, 47(2), 235–256. doi: 10.1023/A: 1013689704352Auer, P., Cesa-Bianchi, N., Freund, Y., & Schapire, R. E. (2002). The nonstochastic multiarmed bandit problem. SIAM journal on computing, 32(1), 48–77. doi: 10 .1137/S0097539701398375Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight uncertainty in neural networks. In Proceedings of the 32nd international conference on inter- national conference on machine learning (Vol. 37, pp. 1613–1622).Bouneffouf, D., Bouzeghoub, A., & Gançarski, A. L. (2012). A contextual-bandit algo- rithm for mobile context-aware recommender system. In International conference on neural information processing (pp. 324–331).Burtini, G., Loeppky, J., & Lawrence, R. (2015). A survey of online experiment design with the stochastic multi-armed bandit. Retrieved from https://arxiv.org/abs/1510.00757Cai, J., Wohn, D. Y., Mittal, A., & Sureshbabu, D. (2018). Utilitarian and hedonic moti- vations for live streaming shopping. In Proceedings of the 2018 acm international conference on interactive experiences for tv and online video (p. 81–88). doi: 10.1145/3210825.3210837Cheng, Z., & Shen, J. (2016, April). On effective location-aware music recommen- dation. ACM Transactions on Information Systems (TOIS), 34(2), 1–32. doi: 10.1145/2846092Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder for statistical machine translation. Retrieved from https://arxiv.org/abs/1406.1078Choe, D.-E., Kim, H.-C., & Kim, M.-H. (2021). Sequence-based modeling of deep learn- ing with lstm and gru networks for structural damage detection of floating offshore wind turbine blades. Renewable Energy, 174, 218–235.Chu, W., Li, L., Reyzin, L., & Schapire, R. (2011). Contextual bandits with linear payoff functions. In Proceedings of the 14th international conference on artificial intelli- gence and statistics (pp. 208–214).Docherty, I. (2018). New governance challenges in the era of ‘smart’mobility. In Governance of the smart mobility transition.Du, C., Gao, Z., Yuan, S., Gao, L., Li, Z., Zeng, Y., ... Lee, K.-C. (2021). Exploration in online advertising systems with deep uncertainty-aware learning. In Proceedings of the 27th acm sigkdd conference on knowledge discovery & data mining (pp. 2792– 2801).Fang, H., Zhang, D., Shu, Y., & Guo, G. (2020). Deep learning for sequential recom- mendation: Algorithms, influential factors, and evaluations. ACM Transactions on Information Systems (TOIS), 39(1), 1–42.Gal, Y., & Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In international conference on machine learning (pp. 1050–1059).Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., ... others (2021). A survey of uncertainty in deep neural networks. Retrieved from https://arxiv.org/abs/2107.03342Gediminas, A., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering, 17(6), 734-749. doi: https://doi.org/10.1109/ TKDE.2005.99Gulrajani, I., Kumar, K., Ahmed, F., Taiga, A. A., Visin, F., Vazquez, D., & Courville, A. (2016). Pixelvae: A latent variable model for natural images. Retrieved from https://arxiv.org/abs/1611.05013He, X., Chen, T., Kan, M.-Y., & Chen, X. (2015). Trirank: Review-aware explainable recommendation by modeling aspects. In Proceedings of the 24th acm international on conference on information and knowledge management (p. 1661–1670). doi: 10.1145/2806416.2806504Hu, M., & Chaudhry, S. S. (2020). Enhancing consumer engagement in e-commerce live streaming via relational bonds. Internet Research, 30(3). doi: 10.1108/INTR-03 -2019-0082Kakade, S. M., Shalev-Shwartz, S., & Tewari, A. (2008). Efficient bandit algorithms for online multiclass prediction. In Proceedings of the 25th international conference on machine learning (pp. 440–447). doi: 10.1145/1390156.1390212Katehakis, M. N., & Veinott Jr, A. F. (1987). The multi-armed bandit problem: Decom- position and computation. Mathematics of Operations Research, 12(2), 262–268. doi: 10.1287/moor.12.2.262Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. Retrieved from https://arxiv.org/abs/1312.6114Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM (JACM), 46(5), 604–632.Ko, H.-C., & Chen, Z.-Y. (2020). Exploring the factors driving live streaming shopping intention: a perspective of parasocial interaction. In Proceedings of the 2020 inter- national conference on management of e-commerce and e-government (pp. 36–40).Langford, J., & Zhang, T. (2007). The Epoch-Greedy algorithm for contextual multi- armed bandits. In Proceedings of the 20th international conference on neural in- formation processing systems (p. 817–824).Lauret, P., Fock, E., Randrianarivony, R. N., & Manicom-Ramsamy, J.-F. (2008). Bayesian neural network approach to short time load forecasting. Energy conver- sion and management, 49(5), 1156–1166.Lee, H. I., Choi, I. Y., Moon, H. S., & Kim, J. K. (2020). A multi-period product recom- mender system in online food market based on recurrent neural networks. Sustain- ability, 12(3), 969.Li, J., Ren, P., Chen, Z., Ren, Z., Lian, T., & Ma, J. (2017). Neural attentive session-based recommendation. In (pp. 1419–1428). doi: 10.1145/3132847Li, L., Chu, W., Langford, J., & Schapire, R. E. (2010). A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on world wide web (pp. 661–670). doi: 10.1145/1772690.1772758Li, S., Karatzoglou, A., & Gentile, C. (2016). Collaborative filtering bandits. In Proceed- ings of the 39th international acm sigir conference on research and development in information retrieval (pp. 539–548).Lin, C.-Y., & Chen, H.-S. (2019). Personalized channel recommendation on live streaming platforms. Multimedia Tools and Applications, 78(2), 1999–2015.Liu, Y. W., Lin, C. Y., & Huang, J. L. (2015). Live streaming channel recommendation using hits algorithm. In 2015 ieee international conference on consumer electronics taiwan (pp. 118–119).Martinez-Cantin, R., De Freitas, N., Brochu, E., Castellanos, J., & Doucet, A. (2009). A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot. Autonomous Robots, 27(2), 93–103. doi: 10.1007/s10514-009-9130-2Mullachery, V., Khera, A., & Husain, A. (2018). Bayesian neural networks. Retrieved from https://arxiv.org/abs/1801.07710Pradel, B., Sean, S., Delporte, J., Guérif, S., Rouveirol, C., Usunier, N., ... France, O. (2011). A case study in a recommender system based on purchase data. In Proceed- ings of the 17th acm sigkdd international conference on knowledge discovery and data mining - kdd ’11 (pp. 377–385). doi: 10.1145/2020408Rappaz, J., McAuley, J., & Aberer, K. (2021). Recommendation on live-streaming plat- forms: Dynamic availability and repeat consumption. In Fifteenth acm conference on recommender systems (pp. 390–399).Reinartz, W. J., & Kumar, V. (2003). The impact of customer relationship characteristics on profitable lifetime duration. Journal of marketing, 67(1), 77–99.Santana, L. L. B. d. S., Souza, A. B. S., Santana, D. L., Dourado, W. A., & Durão, F. A. (2017). Evaluating ensemble strategies for recommender systems under metadata reduction. In Proceedings of the 23rd brazillian symposium on multimedia and the web (pp. 125–132). doi: 10.1145/3126858.3126879Satyal, S., Weber, I., Paik, H.-y., Di Ciccio, C., & Mendling, J. (2018). AB testing for process versions with contextual multi-armed bandit algorithms. In Proceedings of the international conference on advanced information systems engineering (pp. 19–34). doi: 10.1007/978-3-319-91563-0_2Shahrampour, S., Rakhlin, A., & Jadbabaie, A. (2017). Multi-armed bandits in multi-agent networks. In Proceedings of the 2017 ieee international conference on acous- tics, speech and signal processing (p. 2786-2790). doi: 10.1109/ICASSP.2017.7952664Shani, G., & Gunawardana, A. (2011). Evaluating recommendation systems. In F. Ricci, L. Rokach, B. Shapira, & P. B. Kantor (Eds.), Recommender systems handbook (pp. 257–297). doi: 10.1007/978-0-387-85820-3_8Su, X. (2019, dec). An empirical study on the influencing factors of e-commerce live streaming. In 2019 international conference on economic management and model engineering, icemme 2019 (pp. 492–496). doi: 10.1109/ICEMME49371 .2019.00103Sun, Y., Shao, X., Li, X., Guo, Y., & Nie, K. (2019). How live streaming influences purchase intentions in social commerce: An it affordance perspective. Electronic Commerce Research and Applications, 37, 100886. doi: https://doi.org/10.1016/ j.elerap.2019.100886Takahashi, R., & Zhang, S. (2017). Towards bursting filter bubble via contextual risks and uncertainties. Retrieved from https://arxiv.org/abs/1706.09985Truong, Q.-T., Salah, A., & Lauw, H. W. (2021). Bilateral variational autoencoder for collaborative filtering. In Proceedings of the 14th acm international conference on web search and data mining (pp. 292–300).Vanchinathan, H. P., Nikolic, I., De Bona, F., & Krause, A. (2014). Explore-exploit in top-n recommender systems via gaussian processes. In Proceedings of the 8th acm conference on recommender systems (pp. 225–232).Vuyyuru, V. A., Rao, G. A., & Murthy, Y. (2021). A novel weather prediction model using a hybrid mechanism based on mlp and vae with fire-fly optimization algorithm. Evolutionary Intelligence, 14(2), 1173–1185.Wang, H., Wu, Q., & Wang, H. (2016). Learning hidden features for contextual bandits. In Proceedings of the 25th acm international on conference on information and knowledge management (pp. 1633–1642).Wang, Z., Lee, S.-J., & Lee, K.-R. (2018). Factors influencing product purchase intentionin taobao live streaming shopping. Journal of Digital Contents Society, 19(4), 649–659.Wikipedia. (2022). Livestream shopping — Wikipedia, the free encyclopedia. Retrieved from http://en.wikipedia.org/w/index.php?title=Livestream\\%20shopping&oldid=1065424656Wongkitrungrueng, A., & Assarut, N. (2020). The role of live streaming in building consumer trust and engagement with social commerce sellers. Journal of Business Research, 117, 543-556. doi: https://doi.org/10.1016/j.jbusres.2018.08.032Wongkitrungrueng, A., Dehouche, N., & Assarut, N. (2020). Live streaming commerce from the sellers’perspective: implications for online relationship marketing. Jour- nal of Marketing Management, 36(5-6), 488–518.Xu, X., Wu, J.-H., & Li, Q. (2020). What drives consumer shopping behavior in live streaming commerce? Journal of Electronic Commerce Research, 21(3), 144–167.Xue, F., He, X., Wang, X., Xu, J., Liu, K., & Hong, R. (2019, April). Deep item-based col- laborative filtering for top-N recommendation. ACM Transactions on Information Systems (TOIS), 37(3). doi: 10.1145/3314578Yang, T.-W., Shih, W.-Y., Huang, J.-L., Ting, W.-C., & Liu, P.-C. (2013). A hybrid preference-aware recommendation algorithm for live streaming channels. In 2013 conference on technologies and applications of artificial intelligence (pp. 188– 193).Zhang, S., Liu, H., He, J., Han, S., & Du, X. (2021). Deep sequential model for anchor recommendation on live streaming platforms. Big Data Mining and Analytics, 4(3), 173–182.Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system: A survey and new perspectives. ACM Computing Surveys (CSUR), 52(1), 1–38. doi: 10.1145/3285029Zhang, X., Xie, H., Li, H., & CS Lui, J. (2020). Conversational contextual bandit: Algorithm and application. In Proceedings of the web conference 2020 (pp. 662–672). Zhou, D., Li, L., & Gu, Q. (2020). Neural contextual bandits with UCB-based exploration. In Proceedings of the 37th international conference on machine learning (Vol. 119, pp. 11492–11502).Zhou, M., Huang, J., Wu, K., Huang, X., Kong, N., & Campy, K. S. (2021, nov). Characterizing Chinese consumers’ intention to use live e-commerce shopping. Technology in Society, 67, 101767. doi: 10.1016/J.TECHSOC.2021.101767Zou, L., Xia, L., Ding, Z., Song, J., Liu, W., & Yin, D. (2019). Reinforcement learning to optimize long-term user engagement in recommender systems. In Proceedings of the 25th acm sigkdd international conference on knowledge discovery & data mining (pp. 2810–2818). 描述 碩士
國立政治大學
資訊管理學系
109356002資料來源 http://thesis.lib.nccu.edu.tw/record/#G0109356002 資料類型 thesis dc.contributor.advisor 林怡伶 zh_TW dc.contributor.advisor Ling, Yi-Lin en_US dc.contributor.author (Authors) 唐思琪 zh_TW dc.contributor.author (Authors) Tang, Szu-Chi en_US dc.creator (作者) 唐思琪 zh_TW dc.creator (作者) Tang, Szu-Chi en_US dc.date (日期) 2022 en_US dc.date.accessioned 1-Aug-2022 17:20:44 (UTC+8) - dc.date.available 1-Aug-2022 17:20:44 (UTC+8) - dc.date.issued (上傳時間) 1-Aug-2022 17:20:44 (UTC+8) - dc.identifier (Other Identifiers) G0109356002 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/141029 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 資訊管理學系 zh_TW dc.description (描述) 109356002 zh_TW dc.description.abstract (摘要) 近年來,直播電商逐漸受到重視。不同於傳統的電商和單向推播的電視購物,直播電商更加強調即時互動性。由於開設直播的成本低,直播主發起直播的頻率很高、商品也是不斷推成出新,這些都促成了複雜且快速變動的環境,而推薦系統能夠幫助消費者在資訊爆炸的情況下快速做出決定。過往的推薦系統研究注重於準確率的最佳化,不只引發了同溫層效應,更因為總是推薦類似的商品,長期下來導致消費者的不滿意以及流失。為了在精準推薦與探索新喜好的取捨中獲得較好的平衡,我們將此議題看作是一個具備使用者情境的多臂吃角子老虎機問題。此研究在直播電商這種新的商業情境下,提出一個基於強化學習的推薦系統。它能夠通過靜態的顧客特徵以及具時序性的顧客特徵,找出顧客、直播主以及商品之間的關係。我們使用了一種循環神經網路——門基循環單元,來找出顧客隨時間變化的喜好。我們的直播電商推薦系統能夠藉由變分自動變碼器來模糊化顧客的特徵,並在推薦商品的過程中利用貝葉斯神經網路來引入不確定性,來達成控制探索顧客喜好與利用的平衡。據我們所知,我們是第一個提出以基於神經網路的上下文吃角子老虎機演算法,來解決直播電商平台環境下推薦問題的研究。我們比較了經典的多臂吃餃子老虎機演算法,並透過真實世界資料的實驗來初步驗證了我們的理論,並且展示了其在商業實務問題中的潛在應用。 zh_TW dc.description.abstract (摘要) In recent years, live stream e-commerce shopping has received extensive attention from e-commerce businesses and streaming platforms. Different from traditional TV shopping and online shopping, the emerging products roll out continuously on the live stream shopping platform where users and streamers interact and synchronize in real-time. Such a dynamic environment forms a complex user context. The recommender system plays a crucial role in assisting users in information-seeking tasks and decision-making from information overload. Previous recommender systems mainly focus on optimizing accuracy, which results in filter bubbles problem and high churn rates in the long run. To balance exploration and exploitation (EE) trade-off under a dynamic and fast-changing recommendation context, the research formulates the problem as a contextual bandit problem. This study provides a reinforcement learning (RL)-based solution for a new business scenario (i.e., live stream e-commerce) which addresses three relationships between customers, streamers, and products in both static and temporal user contexts. We use Gated Recurrent Unit (GRU) to model the context changes in users` preferences in streamers and products while maintaining their long-term engagement. By encoded uncertainty in neural networks with Variational Autoencoder (VAE) for user modeling and Bayesian Neural Network (BNN) for a product recommendation, the proposed Live E-commerce Recommender System (LERS) can control the balance of EE trade-off. To the best of our knowledge, our study is the first neural network-based contextual bandit algorithm dealing with the recommendation problem in the live streaming e-commerce platforms. We compared our algorithm with classic multi-armed bandit algorithms including UCB1, LinUCB, Exp3, and NeuralUCB. Preliminary experiment results on real-world data corroborate our theory and shed light on potential applications of our algorithm to real-world business problems. en_US dc.description.tableofcontents Acknowledgements i摘要 iiAbstract iiiContents vList of Figures viiiList of Tables x1 Introduction 12 RelatedWork 42.1 Live Streaming E-commerce 42.2 Recommender Systems 52.3 Live Streaming Recommender System 62.4 Contextual Multi-armed Bandit Methods 82.5 Uncertainty Modeling 103 The Proposed Framework 123.1 Problem Definition 123.2 Framework Overview 133.3 Gated Recurrent Unit Networks in Temporal Context Model 163.4 Variational Autoencoder for Blurry Context 183.5 Bayesian Neural Networks for Exploring Product Recommendation 203.6 Training Procedure 214 Experiments 254.1 Datasets 254.2 Implementation Environment 254.3 Customer Context Features 264.3.1 Static Context Features 264.3.2 Customer-Product Context Features 264.3.3 Customer-Streamer Context Features 274.4 Temporal Context Modeling 284.4.1 RNN-based Models for Temporal Context 284.4.2 Identify the Appropriate Sequence Length of Temporal Context 294.5 Full Context Analysis 334.6 Dimension Reduction Analysis 354.7 Production Recommendation Analysis 364.7.1 Evaluation Metrics 364.7.2 Experiment Dataset 384.7.3 Recommendation Context for Product Recommendation 404.7.4 Temporal Context for Product Recommendation 424.7.5 End-to-End Live E-commerce Recommender System 444.8 Algorithm Comparison Experiments 454.8.1 Experiments Settings 464.8.2 Normal Dataset 474.8.3 Active Dataset 504.8.4 Repeat Dataset 515 Discussion 545.1 Offline Environment 545.2 Feature Enrichment 545.3 Context Engineering 555.4 Neural Network 556 Conclusion 57References 59 zh_TW dc.format.extent 2478692 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0109356002 en_US dc.subject (關鍵詞) 直播電商 zh_TW dc.subject (關鍵詞) 推薦系統 zh_TW dc.subject (關鍵詞) 強化學習 zh_TW dc.subject (關鍵詞) 探索與利用之權衡 zh_TW dc.subject (關鍵詞) 神經網路 zh_TW dc.subject (關鍵詞) Live commerce en_US dc.subject (關鍵詞) Live streaming en_US dc.subject (關鍵詞) E-commerce en_US dc.subject (關鍵詞) Recommender system en_US dc.subject (關鍵詞) Recommendation system en_US dc.subject (關鍵詞) Multi-armed bandit en_US dc.subject (關鍵詞) Reinforcement learning en_US dc.subject (關鍵詞) User context en_US dc.subject (關鍵詞) Uncertainty en_US dc.subject (關鍵詞) Exploitation-exploration trade-off en_US dc.subject (關鍵詞) Gated Recurrent Unit en_US dc.subject (關鍵詞) Variational Autoencoder en_US dc.subject (關鍵詞) Bayesian neural networks en_US dc.title (題名) 基於增強學習的直播電商推薦系統 zh_TW dc.title (題名) Reinforcement learning based live streaming e-commerce recommender system en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) Allesiardo, R., Féraud, R., & Bouneffouf, D. (2014). A neural networks committee for the contextual bandit problem. In Processings of the international conference on neural information processing (Vol. 8834, pp. 374–381). doi: 10.1007/978-3-319 -12637-1_47Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-offs. Ma- chine Learning Research, 3(Nov), 397–422.Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the mul- tiarmed bandit problem. Machine learning, 47(2), 235–256. doi: 10.1023/A: 1013689704352Auer, P., Cesa-Bianchi, N., Freund, Y., & Schapire, R. E. (2002). The nonstochastic multiarmed bandit problem. SIAM journal on computing, 32(1), 48–77. doi: 10 .1137/S0097539701398375Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight uncertainty in neural networks. In Proceedings of the 32nd international conference on inter- national conference on machine learning (Vol. 37, pp. 1613–1622).Bouneffouf, D., Bouzeghoub, A., & Gançarski, A. L. (2012). A contextual-bandit algo- rithm for mobile context-aware recommender system. In International conference on neural information processing (pp. 324–331).Burtini, G., Loeppky, J., & Lawrence, R. (2015). A survey of online experiment design with the stochastic multi-armed bandit. Retrieved from https://arxiv.org/abs/1510.00757Cai, J., Wohn, D. Y., Mittal, A., & Sureshbabu, D. (2018). Utilitarian and hedonic moti- vations for live streaming shopping. In Proceedings of the 2018 acm international conference on interactive experiences for tv and online video (p. 81–88). doi: 10.1145/3210825.3210837Cheng, Z., & Shen, J. (2016, April). On effective location-aware music recommen- dation. ACM Transactions on Information Systems (TOIS), 34(2), 1–32. doi: 10.1145/2846092Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder for statistical machine translation. Retrieved from https://arxiv.org/abs/1406.1078Choe, D.-E., Kim, H.-C., & Kim, M.-H. (2021). Sequence-based modeling of deep learn- ing with lstm and gru networks for structural damage detection of floating offshore wind turbine blades. Renewable Energy, 174, 218–235.Chu, W., Li, L., Reyzin, L., & Schapire, R. (2011). Contextual bandits with linear payoff functions. In Proceedings of the 14th international conference on artificial intelli- gence and statistics (pp. 208–214).Docherty, I. (2018). New governance challenges in the era of ‘smart’mobility. In Governance of the smart mobility transition.Du, C., Gao, Z., Yuan, S., Gao, L., Li, Z., Zeng, Y., ... Lee, K.-C. (2021). Exploration in online advertising systems with deep uncertainty-aware learning. In Proceedings of the 27th acm sigkdd conference on knowledge discovery & data mining (pp. 2792– 2801).Fang, H., Zhang, D., Shu, Y., & Guo, G. (2020). Deep learning for sequential recom- mendation: Algorithms, influential factors, and evaluations. ACM Transactions on Information Systems (TOIS), 39(1), 1–42.Gal, Y., & Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In international conference on machine learning (pp. 1050–1059).Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., ... others (2021). A survey of uncertainty in deep neural networks. Retrieved from https://arxiv.org/abs/2107.03342Gediminas, A., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering, 17(6), 734-749. doi: https://doi.org/10.1109/ TKDE.2005.99Gulrajani, I., Kumar, K., Ahmed, F., Taiga, A. A., Visin, F., Vazquez, D., & Courville, A. (2016). Pixelvae: A latent variable model for natural images. Retrieved from https://arxiv.org/abs/1611.05013He, X., Chen, T., Kan, M.-Y., & Chen, X. (2015). Trirank: Review-aware explainable recommendation by modeling aspects. In Proceedings of the 24th acm international on conference on information and knowledge management (p. 1661–1670). doi: 10.1145/2806416.2806504Hu, M., & Chaudhry, S. S. (2020). Enhancing consumer engagement in e-commerce live streaming via relational bonds. Internet Research, 30(3). doi: 10.1108/INTR-03 -2019-0082Kakade, S. M., Shalev-Shwartz, S., & Tewari, A. (2008). Efficient bandit algorithms for online multiclass prediction. In Proceedings of the 25th international conference on machine learning (pp. 440–447). doi: 10.1145/1390156.1390212Katehakis, M. N., & Veinott Jr, A. F. (1987). The multi-armed bandit problem: Decom- position and computation. Mathematics of Operations Research, 12(2), 262–268. doi: 10.1287/moor.12.2.262Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. Retrieved from https://arxiv.org/abs/1312.6114Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM (JACM), 46(5), 604–632.Ko, H.-C., & Chen, Z.-Y. (2020). Exploring the factors driving live streaming shopping intention: a perspective of parasocial interaction. In Proceedings of the 2020 inter- national conference on management of e-commerce and e-government (pp. 36–40).Langford, J., & Zhang, T. (2007). The Epoch-Greedy algorithm for contextual multi- armed bandits. In Proceedings of the 20th international conference on neural in- formation processing systems (p. 817–824).Lauret, P., Fock, E., Randrianarivony, R. N., & Manicom-Ramsamy, J.-F. (2008). Bayesian neural network approach to short time load forecasting. Energy conver- sion and management, 49(5), 1156–1166.Lee, H. I., Choi, I. Y., Moon, H. S., & Kim, J. K. (2020). A multi-period product recom- mender system in online food market based on recurrent neural networks. Sustain- ability, 12(3), 969.Li, J., Ren, P., Chen, Z., Ren, Z., Lian, T., & Ma, J. (2017). Neural attentive session-based recommendation. In (pp. 1419–1428). doi: 10.1145/3132847Li, L., Chu, W., Langford, J., & Schapire, R. E. (2010). A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on world wide web (pp. 661–670). doi: 10.1145/1772690.1772758Li, S., Karatzoglou, A., & Gentile, C. (2016). Collaborative filtering bandits. In Proceed- ings of the 39th international acm sigir conference on research and development in information retrieval (pp. 539–548).Lin, C.-Y., & Chen, H.-S. (2019). Personalized channel recommendation on live streaming platforms. Multimedia Tools and Applications, 78(2), 1999–2015.Liu, Y. W., Lin, C. Y., & Huang, J. L. (2015). Live streaming channel recommendation using hits algorithm. In 2015 ieee international conference on consumer electronics taiwan (pp. 118–119).Martinez-Cantin, R., De Freitas, N., Brochu, E., Castellanos, J., & Doucet, A. (2009). A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot. Autonomous Robots, 27(2), 93–103. doi: 10.1007/s10514-009-9130-2Mullachery, V., Khera, A., & Husain, A. (2018). Bayesian neural networks. Retrieved from https://arxiv.org/abs/1801.07710Pradel, B., Sean, S., Delporte, J., Guérif, S., Rouveirol, C., Usunier, N., ... France, O. (2011). A case study in a recommender system based on purchase data. In Proceed- ings of the 17th acm sigkdd international conference on knowledge discovery and data mining - kdd ’11 (pp. 377–385). doi: 10.1145/2020408Rappaz, J., McAuley, J., & Aberer, K. (2021). Recommendation on live-streaming plat- forms: Dynamic availability and repeat consumption. In Fifteenth acm conference on recommender systems (pp. 390–399).Reinartz, W. J., & Kumar, V. (2003). The impact of customer relationship characteristics on profitable lifetime duration. Journal of marketing, 67(1), 77–99.Santana, L. L. B. d. S., Souza, A. B. S., Santana, D. L., Dourado, W. A., & Durão, F. A. (2017). Evaluating ensemble strategies for recommender systems under metadata reduction. In Proceedings of the 23rd brazillian symposium on multimedia and the web (pp. 125–132). doi: 10.1145/3126858.3126879Satyal, S., Weber, I., Paik, H.-y., Di Ciccio, C., & Mendling, J. (2018). AB testing for process versions with contextual multi-armed bandit algorithms. In Proceedings of the international conference on advanced information systems engineering (pp. 19–34). doi: 10.1007/978-3-319-91563-0_2Shahrampour, S., Rakhlin, A., & Jadbabaie, A. (2017). Multi-armed bandits in multi-agent networks. In Proceedings of the 2017 ieee international conference on acous- tics, speech and signal processing (p. 2786-2790). doi: 10.1109/ICASSP.2017.7952664Shani, G., & Gunawardana, A. (2011). Evaluating recommendation systems. In F. Ricci, L. Rokach, B. Shapira, & P. B. Kantor (Eds.), Recommender systems handbook (pp. 257–297). doi: 10.1007/978-0-387-85820-3_8Su, X. (2019, dec). An empirical study on the influencing factors of e-commerce live streaming. In 2019 international conference on economic management and model engineering, icemme 2019 (pp. 492–496). doi: 10.1109/ICEMME49371 .2019.00103Sun, Y., Shao, X., Li, X., Guo, Y., & Nie, K. (2019). How live streaming influences purchase intentions in social commerce: An it affordance perspective. Electronic Commerce Research and Applications, 37, 100886. doi: https://doi.org/10.1016/ j.elerap.2019.100886Takahashi, R., & Zhang, S. (2017). Towards bursting filter bubble via contextual risks and uncertainties. Retrieved from https://arxiv.org/abs/1706.09985Truong, Q.-T., Salah, A., & Lauw, H. W. (2021). Bilateral variational autoencoder for collaborative filtering. In Proceedings of the 14th acm international conference on web search and data mining (pp. 292–300).Vanchinathan, H. P., Nikolic, I., De Bona, F., & Krause, A. (2014). Explore-exploit in top-n recommender systems via gaussian processes. In Proceedings of the 8th acm conference on recommender systems (pp. 225–232).Vuyyuru, V. A., Rao, G. A., & Murthy, Y. (2021). A novel weather prediction model using a hybrid mechanism based on mlp and vae with fire-fly optimization algorithm. Evolutionary Intelligence, 14(2), 1173–1185.Wang, H., Wu, Q., & Wang, H. (2016). Learning hidden features for contextual bandits. In Proceedings of the 25th acm international on conference on information and knowledge management (pp. 1633–1642).Wang, Z., Lee, S.-J., & Lee, K.-R. (2018). Factors influencing product purchase intentionin taobao live streaming shopping. Journal of Digital Contents Society, 19(4), 649–659.Wikipedia. (2022). Livestream shopping — Wikipedia, the free encyclopedia. Retrieved from http://en.wikipedia.org/w/index.php?title=Livestream\\%20shopping&oldid=1065424656Wongkitrungrueng, A., & Assarut, N. (2020). The role of live streaming in building consumer trust and engagement with social commerce sellers. Journal of Business Research, 117, 543-556. doi: https://doi.org/10.1016/j.jbusres.2018.08.032Wongkitrungrueng, A., Dehouche, N., & Assarut, N. (2020). Live streaming commerce from the sellers’perspective: implications for online relationship marketing. Jour- nal of Marketing Management, 36(5-6), 488–518.Xu, X., Wu, J.-H., & Li, Q. (2020). What drives consumer shopping behavior in live streaming commerce? Journal of Electronic Commerce Research, 21(3), 144–167.Xue, F., He, X., Wang, X., Xu, J., Liu, K., & Hong, R. (2019, April). Deep item-based col- laborative filtering for top-N recommendation. ACM Transactions on Information Systems (TOIS), 37(3). doi: 10.1145/3314578Yang, T.-W., Shih, W.-Y., Huang, J.-L., Ting, W.-C., & Liu, P.-C. (2013). A hybrid preference-aware recommendation algorithm for live streaming channels. In 2013 conference on technologies and applications of artificial intelligence (pp. 188– 193).Zhang, S., Liu, H., He, J., Han, S., & Du, X. (2021). Deep sequential model for anchor recommendation on live streaming platforms. Big Data Mining and Analytics, 4(3), 173–182.Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system: A survey and new perspectives. ACM Computing Surveys (CSUR), 52(1), 1–38. doi: 10.1145/3285029Zhang, X., Xie, H., Li, H., & CS Lui, J. (2020). Conversational contextual bandit: Algorithm and application. In Proceedings of the web conference 2020 (pp. 662–672). Zhou, D., Li, L., & Gu, Q. (2020). Neural contextual bandits with UCB-based exploration. In Proceedings of the 37th international conference on machine learning (Vol. 119, pp. 11492–11502).Zhou, M., Huang, J., Wu, K., Huang, X., Kong, N., & Campy, K. S. (2021, nov). Characterizing Chinese consumers’ intention to use live e-commerce shopping. Technology in Society, 67, 101767. doi: 10.1016/J.TECHSOC.2021.101767Zou, L., Xia, L., Ding, Z., Song, J., Liu, W., & Yin, D. (2019). Reinforcement learning to optimize long-term user engagement in recommender systems. In Proceedings of the 25th acm sigkdd international conference on knowledge discovery & data mining (pp. 2810–2818). zh_TW dc.identifier.doi (DOI) 10.6814/NCCU202201098 en_US