學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

題名 研製相容於資源受限網路的Web of Things服務管理機制與透通式應用層閘道
Design and Implementation of a Service Oriented Application Layer Gateway for Web of Things in Resource-Constrained Networks
作者 邱奕修
Chiu, Yi-Hsiu
貢獻者 廖峻鋒
Liao, Chun-Feng
邱奕修
Chiu, Yi-Hsiu
關鍵詞 物聯網
低功耗有損網路
服務管理
物聯網閘道器
Internet of Things
Web of Things
LLN
service management
IoT gateway
日期 2022
上傳時間 1-Aug-2022 18:14:13 (UTC+8)
摘要 科技日新月異,物聯網 (InternetofThings,IoT) 技術與服務日漸成熟,促成智慧 環境 (SmartEnvironments) 願景的實現。在物聯網環境中,裝置往往是大量且無 所不在的,面對大量且無人監管之裝置,需要有一服務管理機制來管理這些裝置。 考量物聯網裝置的計算能力、體積與耗電量,物聯網裝置通常運行於低功耗有損 網路 (Low-power and Lossy Networks, LLN) 上,且有別於一般網際網路所用的 通訊技術,LLN 裡裝置通常以特定低功耗協定進行通訊。
如何管理大量的物聯網裝置與服務一直是物聯網領域中重點研究議題之一, 然而現行物聯網服務管理機制中,仍未有一提供應用層級的跨異質網路 (IP 網路 - LLN) 服務管理機制。另外,物聯網裝置與協定相當多樣,導致物聯網開發人 員須具備多種裝置與協定的基本知識,才有能力開發物聯網服務。本論文針對上 述兩個議題提出解決方案,一是提出一具備跨異質網路能力的零組態服務管理機 制,讓使用者能透通地管理/發現裝置與其服務,補足目前物聯網領域下服務管 理機制未臻完備之處。二是提出一專屬透通式應用層閘道器,讓使用者能將採用 特定物聯網協定通訊之裝置視為 Web 節點並以 HTTP 架構風格進行互動,解 決物聯網應用開發上手門檻高之問題。最後,本論文對提出之兩解決方案進行原 型實作並評估其可行性,驗證兩方案在保有原先技術特性與效能的情況下提供額 外功能改善物聯網服務管理與開發門檻之議題。
Over the past few years, the advancement of IoT (Internet of Things) technologies has empowered the realization of Smart Environments. In order to handle the large number of unsupervised devices in IoT environment, a service management mechanism is required. As IoT devices are restricted in computing power, size and power, LLN (Low- power and Lossy Network) is used to connect IoT devices. Devices in LLN usually communicate with a specific low-power protocol, in contrast to the communication technologies used on the Internet.
Managing the large number of IoT devices and services is one of the key research topics of IoT technology. However, existing IoT service management mechanisms do not provide a cross-heterogeneous network (IP network to LLN) service management mechanism in application-level. Additionally, due to the great variety of IoT devices and protocols, an extensive knowledge of IoT specifications is required for developers to be able to develop IoT application services. This paper proposes solutions to the two issues mentioned. The solution to the former issue is to propose a zero-configuration service management mechanism with cross-heterogeneous network capability, allowing clients to manage and discover devices and their services in LLN transparently from IP-based network. The solution to the latter issue is to propose a proprietary transparent application-level gateway, allowing clients to treat devices that use specific IoT protocols as Web nodes and interact with them in an HTTP architecture style. Finally, this paper prototypes the two proposed solutions and evaluates their feasibility.
參考文獻 [1] K. Ashton, "That ‘internet of things’ thing," RFID journal, vol. 22, no. 7, pp. 97-114, 2009.
[2] J. Vasseur, "RFC 7102: Terms used in routing for low-power and lossy networks," Internet Engineering Task Force (IETF), 2014.
[3] K. Townsend, C. Cufí, and R. Davidson, Getting started with Bluetooth low energy: tools and techniques for low-power networking. " O`Reilly Media, Inc.", 2014.
[4] R. Heydon, Bluetooth Low Energy: The Developer’s Handbook. Prentice Hall, 2013.
[5] P. Baronti, P. Pillai, V. W. Chook, S. Chessa, A. Gotta, and Y. F. Hu, "Wireless sensor networks: A survey on the state of the art and the 802.15. 4 and ZigBee standards," Computer communications, vol. 30, no. 7, pp. 1655-1695, 2007.
[6] G. Mulligan, "The 6LoWPAN architecture," in Proceedings of the 4th workshop on Embedded networked sensors, 2007, pp. 78-82.
[7] N. Kushalnagar, G. Montenegro, and C. Schumacher, "IPv6 over low-power wireless personal area networks (6LoWPANs): overview, assumptions, problem statement, and goals," 2007.
[8] S. Hagen, IPv6 essentials. " O`Reilly Media, Inc.", 2006.
[9] D. Guinard, V. Trifa, F. Mattern, and E. Wilde, "From the internet of things to
the web of things: Resource-oriented architecture and best practices," in
Architecting the Internet of things: Springer, 2011, pp. 97-129.
[10] M. Kovatsch, Matsukura, R., Lagally, M., Kawaguchi, T., Toumura, K., and
Kajimoto, K., "Web of things (wot) architecture, recommendation," World
Wide Web Consortium (W3C), 2020.
[11] R. Fielding et al., "RFC 2616: Hypertext transfer protocol–HTTP/1.1,"
Internet Engineering Task Force (IETF), 1999.
[12] T. Berners-Lee, R. Fielding, and L. Masinter, "RFC2396: Uniform resource
identifiers (URI): generic syntax," Internet Engineering Task Force (IETF),
1998.
[13] Z. Shelby, K. Hartke, and C. Bormann, "RFC 7252: The constrained
application protocol (CoAP)," Internet Engineering Task Force (IETF), 2014.
[14] J. Nieminen, T. Savolainen, M. Isomaki, B. Patil, Z. Shelby, and C. Gomez,
"RFC 7668: IPv6 over BLUETOOTH(R) Low Energy," Internet Engineering
Task Force (IETF), 2015.
[15] V. Chawathaworncharoen, V. Visoottiviseth, and R. Takano, "Feasibility
evaluation of 6LoWPAN over Bluetooth low energy," arXiv preprint arXiv:1509.06991, 2015.
[16] M. Nottingham and E. Hammer-Lahav, "RFC 5785: Defining well-known
uniform resource identifiers (uris)," Internet Engineering Task Force (IETF),
2010.
[17] Z. Shelby, "RFC 6690: Constrained RESTful environments (CoRE) link
format," Internet Engineering Task Force (IETF), 2012.
[18] A. Presser, Farrell, L., Kemp, D., and Lupton, W., "UPnP device architecture
1.1," UPnP Forum, 2008, vol. 22.
[19] A. Donoho et al., "UPnP Device Architecture 2.0," Open Connectivity
Foundation, 2020.
[20] S. Cheshire and M. Krochmal, "RFC 6762: Multicast dns," Internet
Engineering Task Force (IETF), 2013.
[21] S. Cheshire and M. Krochmal, "RFC 6763: DNS-based service discovery,"
Internet Engineering Task Force (IETF), 2013.
[22] M. Mahyoub, A. Mahmoud, and T. Sheltami, "An optimized discovery
mechanism for smart objects in IoT," in 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 2017: IEEE, pp. 649-655.
[23] J. W. Lee, H. Schulzrinne, W. Kellerer, and Z. Despotovic, "z2z: Discovering zeroconf services beyond local link," in 2007 IEEE Globecom Workshops, 2007: IEEE, pp. 1-7.
[24] "16-bit UUID Numbers Document," Bluetooth SIG, 2021.
[25] S.-J. Kim, H.-M. Seo, W.-C. Park, and S.-D. Kim, "Network Bridge System
for Interoperation of ZigBee-UPnP Network," in 2011 4th International Conference on Intelligent Networks and Intelligent Systems, 2011: IEEE, pp. 125-128.
[26] S. H. Kim, J. S. Kang, H. S. Park, D. Kim, and Y.-j. Kim, "UPnP-ZigBee internetworking architecture mirroring a multi-hop ZigBee network topology," IEEE Transactions on Consumer Electronics, vol. 55, no. 3, pp. 1286-1294, 2009.
[27] C. Amsüss, Z. Shelby, M. Koster, C. Bormann, and P. van der Stok, "RFC 9176: CoRE Resource Directory," Internet Engineering Task Force (IETF), 2022.
[28] P. van der Stok, M. Koster, and C. Amsüss, "CoRE Resource Directory: DNS- SD mapping," Internet Engineering Task Force (IETF), IETF Active Internet- Draft 2019.
[29] N. Correia, A. Mazayev, G. Schütz, J. Martins, and A. Barradas, "Resource design in constrained networks for network lifetime increase," IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1611-1623, 2017.
[30] C. Amsüss, Z. Shelby, M. Koster, C. Bormann, and P. Van der Stok, "Core
resource directory," IETF Active Internet-Draft, 2022.
[31] B. C. Villaverde, R. D. P. Alberola, A. J. Jara, S. Fedor, S. K. Das, and D.
Pesch, "Service discovery protocols for constrained machine-to-machine communications," IEEE communications surveys & tutorials, vol. 16, no. 1, pp. 41-60, 2013.
[32] T. Narten, E. Nordmark, W. Simpson, and H. Soliman, "Neighbor discovery for IP version 6 (IPv6)," 2070-1721, 2007.
[33] A. S. A. M. S. Ahmed, R. Hassan, and N. E. Othman, "IPv6 neighbor discovery protocol specifications, threats and countermeasures: a survey," IEEE Access, vol. 5, pp. 18187-18210, 2017.
[34] M. Baert, P. Camerlynck, P. Crombez, and J. Hoebeke, "A BLE-based multi- gateway network infrastructure with handover support for mobile BLE peripherals," in 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), 2019: IEEE, pp. 91-99.
[35] J. Campos, S. Colteryahn, and K. Gagneja, "Ipv6 transmission over ble using raspberry pi 3," in 2018 International Conference on Computing, Networking and Communications (ICNC), 2018: IEEE, pp. 200-204.
[36] K. Hartke, "RFC 7641: Observing resources in the constrained application protocol (CoAP)," Internet Engineering Task Force (IETF), 2015.
[37] S. Sadowski and P. Spachos, "Comparison of rssi-based indoor localization for smart buildings with internet of things," in 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 2018: IEEE, pp. 24-29.
描述 碩士
國立政治大學
資訊科學系
110753105
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0110753105
資料類型 thesis
dc.contributor.advisor 廖峻鋒zh_TW
dc.contributor.advisor Liao, Chun-Fengen_US
dc.contributor.author (Authors) 邱奕修zh_TW
dc.contributor.author (Authors) Chiu, Yi-Hsiuen_US
dc.creator (作者) 邱奕修zh_TW
dc.creator (作者) Chiu, Yi-Hsiuen_US
dc.date (日期) 2022en_US
dc.date.accessioned 1-Aug-2022 18:14:13 (UTC+8)-
dc.date.available 1-Aug-2022 18:14:13 (UTC+8)-
dc.date.issued (上傳時間) 1-Aug-2022 18:14:13 (UTC+8)-
dc.identifier (Other Identifiers) G0110753105en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/141187-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學系zh_TW
dc.description (描述) 110753105zh_TW
dc.description.abstract (摘要) 科技日新月異,物聯網 (InternetofThings,IoT) 技術與服務日漸成熟,促成智慧 環境 (SmartEnvironments) 願景的實現。在物聯網環境中,裝置往往是大量且無 所不在的,面對大量且無人監管之裝置,需要有一服務管理機制來管理這些裝置。 考量物聯網裝置的計算能力、體積與耗電量,物聯網裝置通常運行於低功耗有損 網路 (Low-power and Lossy Networks, LLN) 上,且有別於一般網際網路所用的 通訊技術,LLN 裡裝置通常以特定低功耗協定進行通訊。
如何管理大量的物聯網裝置與服務一直是物聯網領域中重點研究議題之一, 然而現行物聯網服務管理機制中,仍未有一提供應用層級的跨異質網路 (IP 網路 - LLN) 服務管理機制。另外,物聯網裝置與協定相當多樣,導致物聯網開發人 員須具備多種裝置與協定的基本知識,才有能力開發物聯網服務。本論文針對上 述兩個議題提出解決方案,一是提出一具備跨異質網路能力的零組態服務管理機 制,讓使用者能透通地管理/發現裝置與其服務,補足目前物聯網領域下服務管 理機制未臻完備之處。二是提出一專屬透通式應用層閘道器,讓使用者能將採用 特定物聯網協定通訊之裝置視為 Web 節點並以 HTTP 架構風格進行互動,解 決物聯網應用開發上手門檻高之問題。最後,本論文對提出之兩解決方案進行原 型實作並評估其可行性,驗證兩方案在保有原先技術特性與效能的情況下提供額 外功能改善物聯網服務管理與開發門檻之議題。
zh_TW
dc.description.abstract (摘要) Over the past few years, the advancement of IoT (Internet of Things) technologies has empowered the realization of Smart Environments. In order to handle the large number of unsupervised devices in IoT environment, a service management mechanism is required. As IoT devices are restricted in computing power, size and power, LLN (Low- power and Lossy Network) is used to connect IoT devices. Devices in LLN usually communicate with a specific low-power protocol, in contrast to the communication technologies used on the Internet.
Managing the large number of IoT devices and services is one of the key research topics of IoT technology. However, existing IoT service management mechanisms do not provide a cross-heterogeneous network (IP network to LLN) service management mechanism in application-level. Additionally, due to the great variety of IoT devices and protocols, an extensive knowledge of IoT specifications is required for developers to be able to develop IoT application services. This paper proposes solutions to the two issues mentioned. The solution to the former issue is to propose a zero-configuration service management mechanism with cross-heterogeneous network capability, allowing clients to manage and discover devices and their services in LLN transparently from IP-based network. The solution to the latter issue is to propose a proprietary transparent application-level gateway, allowing clients to treat devices that use specific IoT protocols as Web nodes and interact with them in an HTTP architecture style. Finally, this paper prototypes the two proposed solutions and evaluates their feasibility.
en_US
dc.description.tableofcontents 摘要...I
Abstract...II
目錄...III
圖目錄...V
表目錄...VII
第 1 章 緒論...1
1.1 研究背景...1
1.2 研究動機...2
1.3 研究目標...6
第 2 章 技術背景與相關研究...8
2.1 技術背景...8
2.2 相關研究...18
第 3 章 跨異質網路零組態服務管理機制...21
3.1 設計考量...22
3.2 模組設計與實現...24
第 4 章 專屬透通式應用層閘道...30
4.1 WeBLE 分析與設計...31
4.2 WeBLE 閘道器分析與設計...38
第 5 章 系統實作與評估...48
5.1 系統原型實作...48
5.2 系統評估...50
第 6 章 結論...60
參考文獻...62
附錄...65
zh_TW
dc.format.extent 7374956 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0110753105en_US
dc.subject (關鍵詞) 物聯網zh_TW
dc.subject (關鍵詞) 低功耗有損網路zh_TW
dc.subject (關鍵詞) 服務管理zh_TW
dc.subject (關鍵詞) 物聯網閘道器zh_TW
dc.subject (關鍵詞) Internet of Thingsen_US
dc.subject (關鍵詞) Web of Thingsen_US
dc.subject (關鍵詞) LLNen_US
dc.subject (關鍵詞) service managementen_US
dc.subject (關鍵詞) IoT gatewayen_US
dc.title (題名) 研製相容於資源受限網路的Web of Things服務管理機制與透通式應用層閘道zh_TW
dc.title (題名) Design and Implementation of a Service Oriented Application Layer Gateway for Web of Things in Resource-Constrained Networksen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] K. Ashton, "That ‘internet of things’ thing," RFID journal, vol. 22, no. 7, pp. 97-114, 2009.
[2] J. Vasseur, "RFC 7102: Terms used in routing for low-power and lossy networks," Internet Engineering Task Force (IETF), 2014.
[3] K. Townsend, C. Cufí, and R. Davidson, Getting started with Bluetooth low energy: tools and techniques for low-power networking. " O`Reilly Media, Inc.", 2014.
[4] R. Heydon, Bluetooth Low Energy: The Developer’s Handbook. Prentice Hall, 2013.
[5] P. Baronti, P. Pillai, V. W. Chook, S. Chessa, A. Gotta, and Y. F. Hu, "Wireless sensor networks: A survey on the state of the art and the 802.15. 4 and ZigBee standards," Computer communications, vol. 30, no. 7, pp. 1655-1695, 2007.
[6] G. Mulligan, "The 6LoWPAN architecture," in Proceedings of the 4th workshop on Embedded networked sensors, 2007, pp. 78-82.
[7] N. Kushalnagar, G. Montenegro, and C. Schumacher, "IPv6 over low-power wireless personal area networks (6LoWPANs): overview, assumptions, problem statement, and goals," 2007.
[8] S. Hagen, IPv6 essentials. " O`Reilly Media, Inc.", 2006.
[9] D. Guinard, V. Trifa, F. Mattern, and E. Wilde, "From the internet of things to
the web of things: Resource-oriented architecture and best practices," in
Architecting the Internet of things: Springer, 2011, pp. 97-129.
[10] M. Kovatsch, Matsukura, R., Lagally, M., Kawaguchi, T., Toumura, K., and
Kajimoto, K., "Web of things (wot) architecture, recommendation," World
Wide Web Consortium (W3C), 2020.
[11] R. Fielding et al., "RFC 2616: Hypertext transfer protocol–HTTP/1.1,"
Internet Engineering Task Force (IETF), 1999.
[12] T. Berners-Lee, R. Fielding, and L. Masinter, "RFC2396: Uniform resource
identifiers (URI): generic syntax," Internet Engineering Task Force (IETF),
1998.
[13] Z. Shelby, K. Hartke, and C. Bormann, "RFC 7252: The constrained
application protocol (CoAP)," Internet Engineering Task Force (IETF), 2014.
[14] J. Nieminen, T. Savolainen, M. Isomaki, B. Patil, Z. Shelby, and C. Gomez,
"RFC 7668: IPv6 over BLUETOOTH(R) Low Energy," Internet Engineering
Task Force (IETF), 2015.
[15] V. Chawathaworncharoen, V. Visoottiviseth, and R. Takano, "Feasibility
evaluation of 6LoWPAN over Bluetooth low energy," arXiv preprint arXiv:1509.06991, 2015.
[16] M. Nottingham and E. Hammer-Lahav, "RFC 5785: Defining well-known
uniform resource identifiers (uris)," Internet Engineering Task Force (IETF),
2010.
[17] Z. Shelby, "RFC 6690: Constrained RESTful environments (CoRE) link
format," Internet Engineering Task Force (IETF), 2012.
[18] A. Presser, Farrell, L., Kemp, D., and Lupton, W., "UPnP device architecture
1.1," UPnP Forum, 2008, vol. 22.
[19] A. Donoho et al., "UPnP Device Architecture 2.0," Open Connectivity
Foundation, 2020.
[20] S. Cheshire and M. Krochmal, "RFC 6762: Multicast dns," Internet
Engineering Task Force (IETF), 2013.
[21] S. Cheshire and M. Krochmal, "RFC 6763: DNS-based service discovery,"
Internet Engineering Task Force (IETF), 2013.
[22] M. Mahyoub, A. Mahmoud, and T. Sheltami, "An optimized discovery
mechanism for smart objects in IoT," in 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 2017: IEEE, pp. 649-655.
[23] J. W. Lee, H. Schulzrinne, W. Kellerer, and Z. Despotovic, "z2z: Discovering zeroconf services beyond local link," in 2007 IEEE Globecom Workshops, 2007: IEEE, pp. 1-7.
[24] "16-bit UUID Numbers Document," Bluetooth SIG, 2021.
[25] S.-J. Kim, H.-M. Seo, W.-C. Park, and S.-D. Kim, "Network Bridge System
for Interoperation of ZigBee-UPnP Network," in 2011 4th International Conference on Intelligent Networks and Intelligent Systems, 2011: IEEE, pp. 125-128.
[26] S. H. Kim, J. S. Kang, H. S. Park, D. Kim, and Y.-j. Kim, "UPnP-ZigBee internetworking architecture mirroring a multi-hop ZigBee network topology," IEEE Transactions on Consumer Electronics, vol. 55, no. 3, pp. 1286-1294, 2009.
[27] C. Amsüss, Z. Shelby, M. Koster, C. Bormann, and P. van der Stok, "RFC 9176: CoRE Resource Directory," Internet Engineering Task Force (IETF), 2022.
[28] P. van der Stok, M. Koster, and C. Amsüss, "CoRE Resource Directory: DNS- SD mapping," Internet Engineering Task Force (IETF), IETF Active Internet- Draft 2019.
[29] N. Correia, A. Mazayev, G. Schütz, J. Martins, and A. Barradas, "Resource design in constrained networks for network lifetime increase," IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1611-1623, 2017.
[30] C. Amsüss, Z. Shelby, M. Koster, C. Bormann, and P. Van der Stok, "Core
resource directory," IETF Active Internet-Draft, 2022.
[31] B. C. Villaverde, R. D. P. Alberola, A. J. Jara, S. Fedor, S. K. Das, and D.
Pesch, "Service discovery protocols for constrained machine-to-machine communications," IEEE communications surveys & tutorials, vol. 16, no. 1, pp. 41-60, 2013.
[32] T. Narten, E. Nordmark, W. Simpson, and H. Soliman, "Neighbor discovery for IP version 6 (IPv6)," 2070-1721, 2007.
[33] A. S. A. M. S. Ahmed, R. Hassan, and N. E. Othman, "IPv6 neighbor discovery protocol specifications, threats and countermeasures: a survey," IEEE Access, vol. 5, pp. 18187-18210, 2017.
[34] M. Baert, P. Camerlynck, P. Crombez, and J. Hoebeke, "A BLE-based multi- gateway network infrastructure with handover support for mobile BLE peripherals," in 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), 2019: IEEE, pp. 91-99.
[35] J. Campos, S. Colteryahn, and K. Gagneja, "Ipv6 transmission over ble using raspberry pi 3," in 2018 International Conference on Computing, Networking and Communications (ICNC), 2018: IEEE, pp. 200-204.
[36] K. Hartke, "RFC 7641: Observing resources in the constrained application protocol (CoAP)," Internet Engineering Task Force (IETF), 2015.
[37] S. Sadowski and P. Spachos, "Comparison of rssi-based indoor localization for smart buildings with internet of things," in 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 2018: IEEE, pp. 24-29.
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU202200709en_US