學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

題名 替代能源直購市場創建對生產效率影響
Market Creation of Direct Purchase in Clean Energies and Its Impacts on Misallocation
作者 蔡宜庭
Tsai, Yin-Ting
貢獻者 李文傑<br>王信實
Lee, Wen-Chieh<br>Wang, Shinn-Shyr
蔡宜庭
Tsai, Yin-Ting
關鍵詞 拍賣理論
賽局理論
碳中和
Auction theory
Game theory
Carbon neutral
日期 2022
上傳時間 1-Aug-2022 18:28:00 (UTC+8)
摘要 本文利用賽局理論替台灣替代能源市場建立新的直購電拍賣機制,過往拍賣機制在設定時假設廠商皆採取不合作策略,但現實世界廠商確會優先採取合作策略,若未排除廠商間合作可能將造成市場損失。而透過本研究建立的單邊英式拍賣機制,可以排除廠商間合作可能性,並且該機制透過Revelation Principle,誘使廠商誠實出價,在競爭均衡狀況下將使社會利益最大化。本文亦透過現有資料模擬台灣與世界各國參與該直購電拍賣機制後,找到台灣最好的合作夥伴。因此本文創建了一個相對完善的直購電拍賣機制,有利於推進台灣碳中和。
This article studies the formation of direct purchase of clean energy in an English auction mechanism. Conventional wisdom tells us that suppliers tend to collude to bid prices larger than their respective production costs in order to enjoy the committed joint monopoly profits as is similarly realized in the current devised market. This research; thus, proposes four different kinds of market setups to deduce the market equilibrium with the highest collusion threshold (the patient parameter). The result shows that the tight market supply setup with every supplier indispensable would be the case of the highest collusion threshold. The theoretical result can also be applied to the empirical data to elucidate that the market integration with similar suppliers across different areas would be a more effective way to ease potential collusions.
參考文獻 1. 李文傑, 李浩仲, 王信實, (2021).「貿易報復下的資源錯置分析-以中國太 陽能產業為例」,《經濟論文》,49(2),245-283。[Wen-Chieh Lee, Hao-Chung Li, Shinn-Shyr Wang, (2021). “Resource misallocation under trade retaliations: Case of Chinese solar energy industry.”, Academia Economic Papers,49(2),245-283.]
2. 李星皓,趙勁松,余津嫻,泰萍, (2021). 「直購電試點政策與火電行業資源錯配
研究」,《經濟評論》,232。[Xing-hao Lee, Jinsong Zhao, Chin-Hsien Yu, Ping Qin, (2021).“ Research on Pilot Policy of Direct Electricity Purchase and Resource Misallocation of Thermal Power Industry.”, Economic Review,232.]
3. Amrit Paudel, Chao Long, (2019).“Peer-to-Peer Energy Trading in a Prosumer Based Community Microgrid: A Game-Theoretic Model”, IEEE, Transactions on Industrial Electronics, vol.66
4. Chenghua Zhang, Jianzhong Wu, Yue Zhou, Meng Cheng, Chao Long, (2018). “Peer-to-Peer energy trading in a Microgrid”, Applied Energy, vol.220.
5. Chin-Hsien Yu, Xiuqin Wu, Wen-Chieh Lee, Jinsong Zhao , (2021). “Resource misallocation in the Chinese wind power industry: The role of feed-in tariff policy”, Energy Economics, vol.98.
6. Christiana Figueres, Hans Joachim Schellnhuber, Gail Whiteman, Johan Rockström, Anthony Hobley, Stefan Rahmstorf, (2017). “Three years to safeguard our climate”, Nature, vol.546
7. Davidson Michael R, Zhang Da, Xiong Weiming, Zhang Xiliang, Karplus Valerie J, (2016). “Integrating wind into China’s coal-heavy electricity system”, Nature Energy.
8. Feng Song, De Bi, Chu Wei, (2019) . “Market segmentation and wind curtailment: An empirical analysis”, Energy Policy, vol.132.
9. Fudenberg, D., & Tirole, J. (1991). “Game theory”. MIT press.
10. Fudenberg, D., & Maskin, E. (1990). “Nash and perfect equilibria of discounted repeated games. Journal of Economic Theory”, 51(1), 194-206.
11. Jason Lin, Manisa Pipattanasomporn, Saifur Rahman, (2019). “Comparative analysis of auction mechanisms and bidding strategies for P2P solar transactive energy markets”, Applied Energy, vol.255
12. Jing Cao, Mun S. Ho b, Rong Ma, Fei Teng, (2021). “When carbon emission trading meets a regulated industry: Evidence from the electricity sector of China.”, Journal of Public Economics, vol.200.
13. Kumar, P. (1985). “Consistent mechanism design and the noisy revelation principle. Essays on Intertemporal Incentives and Signalling Ph. D. dissertation”, Dept. of Economics, Stanford University.
14. Lee Keon-Woo, Ko Kyung-Nam, (2020). “Analysis of LCOE for Korean Onshore Wind Farm Considering Social Discount Rate”, Journal of the Korean Solar Energy Society, vol.40.pp.1-13.
15. Nordhaus, W. D. (1975). “Can we control carbon dioxide?”
16. Reid Dorsey-Palmateer, (2020). “Transmission costs and the value of wind generation for the CREZ project”, Energy Policy, vol.138.
17. Severin Borenstein, (2012). “The Private and Public Economics of Renewable Electricity Generation”, Journal of Economic Perspectives, vol.26.pp.67-92.
18. Shuang Xu, Yong Zhao, Yuanzheng Li, Yue Zhou, (2021). “An iterative uniform-price auction mechanism for peer-to-peer energy trading in a community microgrid”, Applied Energy, vol.298
19. Tong Fu, Ze Jian, (2020). “A developmental state: How to allocate electricity efficiently in a developing country”, Energy Policy, vol.138.
20. Vitor N. Coelho, Miri Weiss Cohen, Igor M. Coelho, Nian Liu, Frederico Gadelha Guimarães, (2017). “Multi-agent systems applied for energy systems integration: State-of-the-art applications and trends in microgrids”, Applied Energy, vol.187.
21. Tushar, W., Saha, T. K., Yuen, C., Liddell, P., Bean, R., & Poor, H. V. (2018). “Peer-to-peer energy trading with sustainable user participation: A game theoretic approach.” IEEE Access, 6, 62932-62943.
22. Yue Zhou, Jianzhong Wu, Chao Long, (2018). “Evaluation of peer-to-peer energy sharing mechanisms based on a multiagent simulation framework”, Applied Energy, vol.222.
23. Zhenpeng Li, Tao Ma, (2020). “Peer-to-peer electricity trading in grid-connected residential communities with household distributed photovoltaic,” Applied Energy, vol.278.
描述 碩士
國立政治大學
經濟學系
109258023
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0109258023
資料類型 thesis
dc.contributor.advisor 李文傑<br>王信實zh_TW
dc.contributor.advisor Lee, Wen-Chieh<br>Wang, Shinn-Shyren_US
dc.contributor.author (Authors) 蔡宜庭zh_TW
dc.contributor.author (Authors) Tsai, Yin-Tingen_US
dc.creator (作者) 蔡宜庭zh_TW
dc.creator (作者) Tsai, Yin-Tingen_US
dc.date (日期) 2022en_US
dc.date.accessioned 1-Aug-2022 18:28:00 (UTC+8)-
dc.date.available 1-Aug-2022 18:28:00 (UTC+8)-
dc.date.issued (上傳時間) 1-Aug-2022 18:28:00 (UTC+8)-
dc.identifier (Other Identifiers) G0109258023en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/141250-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 經濟學系zh_TW
dc.description (描述) 109258023zh_TW
dc.description.abstract (摘要) 本文利用賽局理論替台灣替代能源市場建立新的直購電拍賣機制,過往拍賣機制在設定時假設廠商皆採取不合作策略,但現實世界廠商確會優先採取合作策略,若未排除廠商間合作可能將造成市場損失。而透過本研究建立的單邊英式拍賣機制,可以排除廠商間合作可能性,並且該機制透過Revelation Principle,誘使廠商誠實出價,在競爭均衡狀況下將使社會利益最大化。本文亦透過現有資料模擬台灣與世界各國參與該直購電拍賣機制後,找到台灣最好的合作夥伴。因此本文創建了一個相對完善的直購電拍賣機制,有利於推進台灣碳中和。zh_TW
dc.description.abstract (摘要) This article studies the formation of direct purchase of clean energy in an English auction mechanism. Conventional wisdom tells us that suppliers tend to collude to bid prices larger than their respective production costs in order to enjoy the committed joint monopoly profits as is similarly realized in the current devised market. This research; thus, proposes four different kinds of market setups to deduce the market equilibrium with the highest collusion threshold (the patient parameter). The result shows that the tight market supply setup with every supplier indispensable would be the case of the highest collusion threshold. The theoretical result can also be applied to the empirical data to elucidate that the market integration with similar suppliers across different areas would be a more effective way to ease potential collusions.en_US
dc.description.tableofcontents 摘要 3
1 緒論 8
2 文獻回顧 13
2.1如何碳中和 13
2.2經濟學家怎麼看? 14
2.3再生能源受到的挑戰 15
2.4總論 17
3 研究方法 17
3.1賽局理論及玩家策略 18
3.1.1單期賽局 18
3.1.2優勢策略 (Dominant Strategies) 19
3.1.3賽局中的Nash均衡解 20
3.1.4重複賽局 20
3.1.5拍賣機制 22
3.1.6 直購電市場的可能拍賣機制 23
3.2單邊英式拍賣機制 24
3.2.1基本假設介紹 24
3.2.2如何防止勾結 26
3.2.3比較靜態分析 33
3.3小結 35
4市場模擬 37
4.1資料來源 37
4.2台灣國內市場模擬 38
4.3國際市場模擬 41
5.結論與建議 43
參考文獻 51
zh_TW
dc.format.extent 2049637 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0109258023en_US
dc.subject (關鍵詞) 拍賣理論zh_TW
dc.subject (關鍵詞) 賽局理論zh_TW
dc.subject (關鍵詞) 碳中和zh_TW
dc.subject (關鍵詞) Auction theoryen_US
dc.subject (關鍵詞) Game theoryen_US
dc.subject (關鍵詞) Carbon neutralen_US
dc.title (題名) 替代能源直購市場創建對生產效率影響zh_TW
dc.title (題名) Market Creation of Direct Purchase in Clean Energies and Its Impacts on Misallocationen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 1. 李文傑, 李浩仲, 王信實, (2021).「貿易報復下的資源錯置分析-以中國太 陽能產業為例」,《經濟論文》,49(2),245-283。[Wen-Chieh Lee, Hao-Chung Li, Shinn-Shyr Wang, (2021). “Resource misallocation under trade retaliations: Case of Chinese solar energy industry.”, Academia Economic Papers,49(2),245-283.]
2. 李星皓,趙勁松,余津嫻,泰萍, (2021). 「直購電試點政策與火電行業資源錯配
研究」,《經濟評論》,232。[Xing-hao Lee, Jinsong Zhao, Chin-Hsien Yu, Ping Qin, (2021).“ Research on Pilot Policy of Direct Electricity Purchase and Resource Misallocation of Thermal Power Industry.”, Economic Review,232.]
3. Amrit Paudel, Chao Long, (2019).“Peer-to-Peer Energy Trading in a Prosumer Based Community Microgrid: A Game-Theoretic Model”, IEEE, Transactions on Industrial Electronics, vol.66
4. Chenghua Zhang, Jianzhong Wu, Yue Zhou, Meng Cheng, Chao Long, (2018). “Peer-to-Peer energy trading in a Microgrid”, Applied Energy, vol.220.
5. Chin-Hsien Yu, Xiuqin Wu, Wen-Chieh Lee, Jinsong Zhao , (2021). “Resource misallocation in the Chinese wind power industry: The role of feed-in tariff policy”, Energy Economics, vol.98.
6. Christiana Figueres, Hans Joachim Schellnhuber, Gail Whiteman, Johan Rockström, Anthony Hobley, Stefan Rahmstorf, (2017). “Three years to safeguard our climate”, Nature, vol.546
7. Davidson Michael R, Zhang Da, Xiong Weiming, Zhang Xiliang, Karplus Valerie J, (2016). “Integrating wind into China’s coal-heavy electricity system”, Nature Energy.
8. Feng Song, De Bi, Chu Wei, (2019) . “Market segmentation and wind curtailment: An empirical analysis”, Energy Policy, vol.132.
9. Fudenberg, D., & Tirole, J. (1991). “Game theory”. MIT press.
10. Fudenberg, D., & Maskin, E. (1990). “Nash and perfect equilibria of discounted repeated games. Journal of Economic Theory”, 51(1), 194-206.
11. Jason Lin, Manisa Pipattanasomporn, Saifur Rahman, (2019). “Comparative analysis of auction mechanisms and bidding strategies for P2P solar transactive energy markets”, Applied Energy, vol.255
12. Jing Cao, Mun S. Ho b, Rong Ma, Fei Teng, (2021). “When carbon emission trading meets a regulated industry: Evidence from the electricity sector of China.”, Journal of Public Economics, vol.200.
13. Kumar, P. (1985). “Consistent mechanism design and the noisy revelation principle. Essays on Intertemporal Incentives and Signalling Ph. D. dissertation”, Dept. of Economics, Stanford University.
14. Lee Keon-Woo, Ko Kyung-Nam, (2020). “Analysis of LCOE for Korean Onshore Wind Farm Considering Social Discount Rate”, Journal of the Korean Solar Energy Society, vol.40.pp.1-13.
15. Nordhaus, W. D. (1975). “Can we control carbon dioxide?”
16. Reid Dorsey-Palmateer, (2020). “Transmission costs and the value of wind generation for the CREZ project”, Energy Policy, vol.138.
17. Severin Borenstein, (2012). “The Private and Public Economics of Renewable Electricity Generation”, Journal of Economic Perspectives, vol.26.pp.67-92.
18. Shuang Xu, Yong Zhao, Yuanzheng Li, Yue Zhou, (2021). “An iterative uniform-price auction mechanism for peer-to-peer energy trading in a community microgrid”, Applied Energy, vol.298
19. Tong Fu, Ze Jian, (2020). “A developmental state: How to allocate electricity efficiently in a developing country”, Energy Policy, vol.138.
20. Vitor N. Coelho, Miri Weiss Cohen, Igor M. Coelho, Nian Liu, Frederico Gadelha Guimarães, (2017). “Multi-agent systems applied for energy systems integration: State-of-the-art applications and trends in microgrids”, Applied Energy, vol.187.
21. Tushar, W., Saha, T. K., Yuen, C., Liddell, P., Bean, R., & Poor, H. V. (2018). “Peer-to-peer energy trading with sustainable user participation: A game theoretic approach.” IEEE Access, 6, 62932-62943.
22. Yue Zhou, Jianzhong Wu, Chao Long, (2018). “Evaluation of peer-to-peer energy sharing mechanisms based on a multiagent simulation framework”, Applied Energy, vol.222.
23. Zhenpeng Li, Tao Ma, (2020). “Peer-to-peer electricity trading in grid-connected residential communities with household distributed photovoltaic,” Applied Energy, vol.278.
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU202201133en_US