學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

題名 多重品質評估機制的樣品影像分類
Sample image classification with multiple quality evaluation mechanism
作者 林庭漪
Lin, Ting-Yi
貢獻者 羅崇銘
Lo,Chung-Ming
林庭漪
Lin,Ting-Yi
關鍵詞 瑕疵檢測
深度學習
機器學習
合成式學習
集成式學習
Defect detection
Deep learning
Machine learning
Synthetic learning
Ensemble learning
日期 2022
上傳時間 2-Sep-2022 15:00:17 (UTC+8)
摘要 德國提出工業4.0,其他國家進而也提出類似概念,融合實體與虛擬達到垂直與平行的整合,以智慧製造來實現工業4.0,其中,品質檢測在產品交付前占有重要的地位,為了快速且準確的全面檢測各種產品,基於影像辨識的高度自動化檢測是智慧製造中不可或缺的一環,本研究使用工廠實際量產中的6000張端子台零件樣本影像並建立一自動化人工智慧辨識模型。不同於過去文獻只使用單一分類器,本研究使用多重評估機制來建立辨識模型,透過紋理特徵擷取,形成機器學習模型,透過使用遷移式學習訓練不同卷積神經網路形成深度學習模型,並提出合成式學習,結合機器學習分類與深度學習分類的優點,同時評估使用機器學習、深度學習以及不同多重評估機制的比較。結果顯示以合成式學習中的Confidence進行多重評估機制的分類能將準確率提升最多,由96.00%提升至97.83%,集成式Bagging則是提供相對穩定的準確率提升,都比單一分類器提升0.7%左右,透過本研究得知,使用合成式學習與集成式學習建立的分類模型皆可達到提升準確率的目的,合成式學習在瑕疵檢測能夠達到最高準確率並實現智慧製造中的自動化。
Not only Germany proposed Industry 4.0, but also other countries have proposed similar concepts. Industry 4.0 is realized by integrating physical and virtual to achieve vertical and parallel integration and smart manufacturing. Quality inspection plays an important role before product delivery. In order to quickly and accurately inspect all kinds of products, highly automated inspection based on image recognition is an indispensable part of smart manufacturing. This study uses 6000 sample images of printed circuit board (PCB) connectors from actual mass production in factories and builds an automated artificial intelligence recognition model. Unlike previous literature that only uses a single classifier, this study uses multiple evaluation mechanisms to build the recognition model, which forms a machine learning model through texture feature extraction and a deep learning model through training different convolutional neural networks using transfer learning. This study proposes synthetic learning, which combines the advantages of machine learning and deep learning, and evaluates the comparison of using machine learning, deep learning, and different multiple evaluation mechanisms. The results show that using Confidence in synthetic learning to classify multiple evaluation mechanisms can improve the accuracy rate the most, from 96.00% to 97.83%, while Bagging provides a relatively stable accuracy rate improvement, both of which are about 0.7% higher than that of a single classifier. The synthetic learning can achieve the highest accuracy rate in defect detection and make the automation in smart manufacturing become practical.
參考文獻 Agarwal, K., & Shivpuri, R. (2015). On line prediction of surface defects in hot bar rolling based on Bayesian hierarchical modeling. Journal of Intelligent Manufacturing, 26(4), 785-800. https://doi.org/10.1007/s10845-013-0834-y
Aghdam, S. R., Amid, E., & Imani, M. F. (2012, 18-20 July 2012). A fast method of steel surface defect detection using decision trees applied to LBP based features. 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA),
Allee, V. (2008). Value network analysis and value conversion of tangible and intangible assets. Journal of intellectual capital.
Amadasun, M., & King, R. (1989). Textural features corresponding to textural properties. IEEE Transactions on systems, man, and cybernetics, 19(5), 1264-1274.
Amid, E., Aghdam, S. R., & Amindavar, H. (2012). Enhanced Performance for Support Vector Machines as Multiclass Classifiers in Steel Surface Defect Detection. International Journal of Electrical and Computer Engineering, 6(7), 693-697.
Argyriou, A., Maurer, A., & Pontil, M. (2008, 2008//). An Algorithm for Transfer Learning in a Heterogeneous Environment. Machine Learning and Knowledge Discovery in Databases, Berlin, Heidelberg.
Bakır, B., Batmaz, İ., Güntürkün, F., İpekçi, İ. A., Köksal, G., & Özdemirel, N. (2006). Defect cause modeling with decision tree and regression analysis. World Acad Sci Eng Technoly, 24, 1-4.
Ballard, D. H., & Brown, C. M. (1982). Computer vision. englewood cliffs. J: Prentice Hall.
Bhandari, S. H., Deshpande, S., & Deshpande, S. (2008). A simple approach to surface defect detection. 2008 IEEE Region, 10, 8-10.
Boumahdi, M., Dron, J.-P., Rechak, S., & Cousinard, O. (2010). On the extraction of rules in the identification of bearing defects in rotating machinery using decision tree. Expert Systems with Applications, 37(8), 5887-5894. https://doi.org/https://doi.org/10.1016/j.eswa.2010.02.017
Brosnan, T., & Sun, D.-W. (2004). Improving quality inspection of food products by computer vision––a review. Journal of Food Engineering, 61(1), 3-16. https://doi.org/https://doi.org/10.1016/S0260-8774(03)00183-3
Choi, K., Koo, K., & Lee, J. S. (2006, 18-21 Oct. 2006). Development of Defect Classification Algorithm for POSCO Rolling Strip Surface Inspection System. 2006 SICE-ICASE International Joint Conference,
Czimmermann, T., Ciuti, G., Milazzo, M., Chiurazzi, M., Roccella, S., Oddo, C. M., & Dario, P. (2020). Visual-Based Defect Detection and Classification Approaches for Industrial Applications—A SURVEY. Sensors, 20(5). https://doi.org/10.3390/s20051459
Damacharla, P., A. R. M, V., Ringenberg, J., & Javaid, A. Y. (2021, 19-21 May 2021). TLU-Net: A Deep Learning Approach for Automatic Steel Surface Defect Detection. 2021 International Conference on Applied Artificial Intelligence (ICAPAI),
DARPA Information Processing Technology Office. (2005). Transfer Learning Proposer Information Pamphlet (PIP) for Broad Agency Announcement 05-29. http://logic.stanford.edu/tl/TransferLearningPIP.pdf
Diaz, R., Faus, G., Blasco, M., Blasco, J., & Moltó, E. (2000). The application of a fast algorithm for the classification of olives by machine vision. Food Research International, 33(3), 305-309. https://doi.org/https://doi.org/10.1016/S0963-9969(00)00041-7
Durden, J. M., Hosking, B., Bett, B. J., Cline, D., & Ruhl, H. A. (2021). Automated classification of fauna in seabed photographs: The impact of training and validation dataset size, with considerations for the class imbalance. Progress in Oceanography, 196, 102612. https://doi.org/https://doi.org/10.1016/j.pocean.2021.102612
Evans, P. C., & Annunziata, M. (2012). Industrial Internet: Pushing the Boundaries.
Fadli, V. F., & Herlistiono, I. O. (2020). Steel Surface Defect Detection using Deep Learning. Int. J. Innov. Sci. Res. Technol, 5, 244-250.
Galloway, M. M. (1975). Texture analysis using gray level run lengths. Computer graphics and image processing, 4(2), 172-179.
Ghosh, B., Bhuyan, M. K., Sasmal, P., Iwahori, Y., & Gadde, P. (2018, 7-9 Dec. 2018). Defect Classification of Printed Circuit Boards based on Transfer Learning. 2018 IEEE Applied Signal Processing Conference (ASPCON),
Grosan, C., & Abraham, A. (2011). Intelligent systems. Springer.
Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. IEEE Transactions on systems, man, and cybernetics(6), 610-621.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition,
Hemdan, E. E.-D., Shouman, M. A., & Karar, M. E. (2020). Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in x-ray images. arXiv preprint arXiv:2003.11055.
Henning, K. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0.
Hongbin, J., Murphey, Y. L., Jinajun, S., & Tzyy-Shuh, C. (2004, 26-26 Aug. 2004). An intelligent real-time vision system for surface defect detection. Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.,
Hou, D., Liu, T., Pan, Y., & Hou, J. (2019, 7-9 Jan. 2019). AI on edge device for laser chip defect detection. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC),
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition,
Jaiswal, A., Gianchandani, N., Singh, D., Kumar, V., & Kaur, M. (2021). Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning. Journal of Biomolecular Structure and Dynamics, 39(15), 5682-5689. https://doi.org/10.1080/07391102.2020.1788642
Jiang, B. C., Wang, C. C., & Chen, P. L. (2004). Logistic regression tree applied to classify PCB golden finger defects. The International Journal of Advanced Manufacturing Technology, 24(7), 496-502. https://doi.org/10.1007/s00170-002-1500-2
Kagermann, H., Wahlster, W., & Helbig, J. (2013). Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0 -- Securing the Future of German Manufacturing Industry. http://forschungsunion.de/pdf/industrie_4_0_final_report.pdf
Khanh, V., Hua, K. A., & Tavanapong, W. (2003). Image retrieval based on regions of interest. IEEE Transactions on Knowledge and Data Engineering, 15(4), 1045-1049. https://doi.org/10.1109/TKDE.2003.1209021
Kibira, D., Morris, K. C., & Kumaraguru, S. (2016). Methods and Tools for Performance Assurance of Smart Manufacturing Systems. Journal of research of the National Institute of Standards and Technology, 121, 282-313. https://doi.org/10.6028/jres.121.013
Kim, J., Kim, S., Kwon, N., Kang, H., Kim, Y., & Lee, C. (2018, 30 April-3 May 2018). Deep learning based automatic defect classification in through-silicon Via process: FA: Factory automation. 2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC),
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 1097-1105.
Kumar, A., & Jain, M. (2020). Why Ensemble Techniques Are Needed. In A. Kumar & M. Jain (Eds.), Ensemble Learning for AI Developers: Learn Bagging, Stacking, and Boosting Methods with Use Cases (pp. 1-10). Apress. https://doi.org/10.1007/978-1-4842-5940-5_1
Kumaresan, S., Aultrin, K. S. J., Kumar, S. S., & Anand, M. D. (2021). Transfer Learning With CNN for Classification of Weld Defect. IEEE Access, 9, 95097-95108. https://doi.org/10.1109/ACCESS.2021.3093487
Kyoung Min, K., Byung Jin, L., Kyoung, L., & Gwi Tae, P. (1999, 22-25 Aug. 1999). Design of a binary decision tree using the genetic algorithm and K-means algorithm for recognition of the defect patterns of cold mill strip. FUZZ-IEEE`99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315),
Labrinidis, A., & Jagadish, H. V. (2012). Challenges and opportunities with big data. Proc. VLDB Endow., 5(12), 2032–2033. https://doi.org/10.14778/2367502.2367572
Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., Van Stiphout, R. G. P. M., Granton, P., Zegers, C. M. L., Gillies, R., Boellard, R., Dekker, A., & Aerts, H. J. W. L. (2012). Radiomics: Extracting more information from medical images using advanced feature analysis. European Journal of Cancer, 48(4), 441-446. https://doi.org/10.1016/j.ejca.2011.11.036
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791
Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431-440. https://doi.org/https://doi.org/10.1016/j.bushor.2015.03.008
Lee, S. M., Lee, D., & Kim, Y. S. (2019). The quality management ecosystem for predictive maintenance in the Industry 4.0 era. International Journal of Quality Innovation, 5(1), 4. https://doi.org/10.1186/s40887-019-0029-5
Li, B.-h., Hou, B.-c., Yu, W.-t., Lu, X.-b., & Yang, C.-w. (2017). Applications of artificial intelligence in intelligent manufacturing: a review. Frontiers of Information Technology & Electronic Engineering, 18(1), 86-96. https://doi.org/10.1631/FITEE.1601885
Li, X., Li, D., Wan, J., Vasilakos, A. V., Lai, C.-F., & Wang, S. (2017). A review of industrial wireless networks in the context of Industry 4.0. Wireless Networks, 23(1), 23-41. https://doi.org/10.1007/s11276-015-1133-7
Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine Learning in Agriculture: A Review. Sensors, 18(8). https://doi.org/10.3390/s18082674
Lien, P. C., & Zhao, Q. (2018, 12-15 Aug. 2018). Product Surface Defect Detection Based on Deep Learning. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech),
Lu, T., Han, B., Chen, L., Yu, F., & Xue, C. (2021). A generic intelligent tomato classification system for practical applications using DenseNet-201 with transfer learning. Scientific Reports, 11(1), 15824. https://doi.org/10.1038/s41598-021-95218-w
Nakashima, K., Nagata, F., Ochi, H., Otsuka, A., Ikeda, T., Watanabe, K., & Habib, M. K. (2021). Detection of minute defects using transfer learning-based CNN models. Artificial Life and Robotics, 26(1), 35-41. https://doi.org/10.1007/s10015-020-00618-2
Napierala, K., & Stefanowski, J. (2016). Types of minority class examples and their influence on learning classifiers from imbalanced data. Journal of Intelligent Information Systems, 46(3), 563-597. https://doi.org/10.1007/s10844-015-0368-1
Narayanan, B. N., Beigh, K., Loughnane, G., & Powar, N. (2019). Support vector machine and convolutional neural network based approaches for defect detection in fused filament fabrication. Applications of Machine Learning,
NIST, N. I. o. S. a. T. (2021). Product Definitions for Smart Manufacturing. https://www.nist.gov/programs-projects/product-definitions-smart-manufacturing
Pan, S. J., & Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345-1359. https://doi.org/10.1109/TKDE.2009.191
Patel, K. K., Kar, A., Jha, S. N., & Khan, M. A. (2012). Machine vision system: a tool for quality inspection of food and agricultural products. Journal of Food Science and Technology, 49(2), 123-141. https://doi.org/10.1007/s13197-011-0321-4
Patel, S. V., & Jokhakar, V. N. (2016, 15-17 Dec. 2016). A random forest based machine learning approach for mild steel defect diagnosis. 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC),
Pernkopf, F. (2004). Detection of surface defects on raw steel blocks using Bayesian network classifiers. Pattern Analysis and Applications, 7(3), 333-342. https://doi.org/10.1007/BF02683998
Petrou, M. M., & Petrou, C. (2010). Image processing: the fundamentals. John Wiley & Sons.
ping Tian, D. (2013). A review on image feature extraction and representation techniques. International Journal of Multimedia and Ubiquitous Engineering, 8(4), 385-396.
Porter, M. E., & Porter, M. E. (1983). Cases in competitive strategy / Michael E. Porter. Free Press.
Qiang, Z., He, L., & Dai, F. (2019, 2019//). Identification of Plant Leaf Diseases Based on Inception V3 Transfer Learning and Fine-Tuning. Smart City and Informatization, Singapore.
Refaeilzadeh, P., Tang, L., & Liu, H. (2009). Cross-validation. Encyclopedia of database systems, 5, 532-538.
Saqlain, M., Jargalsaikhan, B., & Lee, J. Y. (2019). A Voting Ensemble Classifier for Wafer Map Defect Patterns Identification in Semiconductor Manufacturing. IEEE Transactions on Semiconductor Manufacturing, 32(2), 171-182. https://doi.org/10.1109/TSM.2019.2904306
Shattuck, D. W., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr, K. L., Poldrack, R. A., Bilder, R. M., & Toga, A. W. (2008). Construction of a 3D probabilistic atlas of human cortical structures. NeuroImage, 39(3), 1064-1080. https://doi.org/https://doi.org/10.1016/j.neuroimage.2007.09.031
Shen, Z., & Yu, J. (2019, 15-18 Dec. 2019). Wafer Map Defect Recognition Based on Deep Transfer Learning. 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM),
Su, K., Zhao, Q., & Lien, P. C. (2019, 5-8 Aug. 2019). Product Surface Defect Detection Based on CNN Ensemble with Rejection. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech),
Sun, C., & Wee, W. G. (1983). Neighboring gray level dependence matrix for texture classification. Computer Vision, Graphics, and Image Processing, 23(3), 341-352.
Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, inception-resnet and the impact of residual connections on learning. Thirty-first AAAI conference on artificial intelligence,
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition,
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition,
Thalagala, S., & Walgampaya, C. (2021, 16-16 Sept. 2021). Application of AlexNet convolutional neural network architecture-based transfer learning for automated recognition of casting surface defects. 2021 International Research Conference on Smart Computing and Systems Engineering (SCSE),
Thibault, G., Fertil, B., Navarro, C., Pereira, S., Cau, P., Lévy, N., Sequeira, J., & Mari, J.-L. (2009). Texture indexes and gray level size zone matrix. Application to cell nuclei classification. 10th International Conference on Pattern Recognition and Information Processing, PRIP 2009,
van Griethuysen, J. J. M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R. G. H., Fillion-Robin, J.-C., Pieper, S., & Aerts, H. J. W. L. (2017). Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Research, 77(21), e104. https://doi.org/10.1158/0008-5472.CAN-17-0339
van Griethuysen, J. J. M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R. G. H., Fillion-Robin, J.-C., Pieper, S., & Aerts, H. J. W. L. (2017). Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Research, 77(21), e104-e107. https://doi.org/10.1158/0008-5472.Can-17-0339
Wagner, S. (2014, 7-10 July 2014). Combination of convolutional feature extraction and support vector machines for radar ATR. 17th International Conference on Information Fusion (FUSION),
Wan, J., Tang, S., Li, D., Wang, S., Liu, C., Abbas, H., & Vasilakos, A. V. (2017). A Manufacturing Big Data Solution for Active Preventive Maintenance. IEEE Transactions on Industrial Informatics, 13(4), 2039-2047. https://doi.org/10.1109/TII.2017.2670505
Wang, Y., Xia, H., Yuan, X., Li, L., & Sun, B. (2018). Distributed defect recognition on steel surfaces using an improved random forest algorithm with optimal multi-feature-set fusion. Multimedia Tools and Applications, 77(13), 16741-16770. https://doi.org/10.1007/s11042-017-5238-0
Wu, H., Zhang, X., Xie, H., Kuang, Y., & Ouyang, G. (2013). Classification of Solder Joint Using Feature Selection Based on Bayes and Support Vector Machine. IEEE Transactions on Components, Packaging and Manufacturing Technology, 3(3), 516-522. https://doi.org/10.1109/TCPMT.2012.2231902
Xu, X. (2012). From cloud computing to cloud manufacturing. Robotics and Computer-Integrated Manufacturing, 28(1), 75-86. https://doi.org/https://doi.org/10.1016/j.rcim.2011.07.002
Yang, J., Li, S., Wang, Z., Dong, H., Wang, J., & Tang, S. (2020). Using Deep Learning to Detect Defects in Manufacturing: A Comprehensive Survey and Current Challenges. Materials, 13(24). https://doi.org/10.3390/ma13245755
Zhang, H., Chen, Z., Zhang, C., Xi, J., & Le, X. (2019, 22-26 Aug. 2019). Weld Defect Detection Based on Deep Learning Method. 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE),
Zhang, Z., Yang, Z., Ren, W., & Wen, G. (2019). Random forest-based real-time defect detection of Al alloy in robotic arc welding using optical spectrum. Journal of Manufacturing Processes, 42, 51-59. https://doi.org/https://doi.org/10.1016/j.jmapro.2019.04.023
Zhou, J. (2015). Intelligent Manufacturing——Main Direction of" Made in China 2025". China Mechanical Engineering, 26(17), 2273.
Zhu, H., Ge, W., & Liu, Z. (2019). Deep Learning-Based Classification of Weld Surface Defects. Applied Sciences, 9(16). https://doi.org/10.3390/app9163312
Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2021). A Comprehensive Survey on Transfer Learning. Proceedings of the IEEE, 109(1), 43-76. https://doi.org/10.1109/jproc.2020.3004555
町洋企業股份有限公司. (2021). 產業應用. https://www.dinkle.com/tw/application/application.php
描述 碩士
國立政治大學
圖書資訊與檔案學研究所
109155019
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0109155019
資料類型 thesis
dc.contributor.advisor 羅崇銘zh_TW
dc.contributor.advisor Lo,Chung-Mingen_US
dc.contributor.author (Authors) 林庭漪zh_TW
dc.contributor.author (Authors) Lin,Ting-Yien_US
dc.creator (作者) 林庭漪zh_TW
dc.creator (作者) Lin, Ting-Yien_US
dc.date (日期) 2022en_US
dc.date.accessioned 2-Sep-2022 15:00:17 (UTC+8)-
dc.date.available 2-Sep-2022 15:00:17 (UTC+8)-
dc.date.issued (上傳時間) 2-Sep-2022 15:00:17 (UTC+8)-
dc.identifier (Other Identifiers) G0109155019en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/141618-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 圖書資訊與檔案學研究所zh_TW
dc.description (描述) 109155019zh_TW
dc.description.abstract (摘要) 德國提出工業4.0,其他國家進而也提出類似概念,融合實體與虛擬達到垂直與平行的整合,以智慧製造來實現工業4.0,其中,品質檢測在產品交付前占有重要的地位,為了快速且準確的全面檢測各種產品,基於影像辨識的高度自動化檢測是智慧製造中不可或缺的一環,本研究使用工廠實際量產中的6000張端子台零件樣本影像並建立一自動化人工智慧辨識模型。不同於過去文獻只使用單一分類器,本研究使用多重評估機制來建立辨識模型,透過紋理特徵擷取,形成機器學習模型,透過使用遷移式學習訓練不同卷積神經網路形成深度學習模型,並提出合成式學習,結合機器學習分類與深度學習分類的優點,同時評估使用機器學習、深度學習以及不同多重評估機制的比較。結果顯示以合成式學習中的Confidence進行多重評估機制的分類能將準確率提升最多,由96.00%提升至97.83%,集成式Bagging則是提供相對穩定的準確率提升,都比單一分類器提升0.7%左右,透過本研究得知,使用合成式學習與集成式學習建立的分類模型皆可達到提升準確率的目的,合成式學習在瑕疵檢測能夠達到最高準確率並實現智慧製造中的自動化。zh_TW
dc.description.abstract (摘要) Not only Germany proposed Industry 4.0, but also other countries have proposed similar concepts. Industry 4.0 is realized by integrating physical and virtual to achieve vertical and parallel integration and smart manufacturing. Quality inspection plays an important role before product delivery. In order to quickly and accurately inspect all kinds of products, highly automated inspection based on image recognition is an indispensable part of smart manufacturing. This study uses 6000 sample images of printed circuit board (PCB) connectors from actual mass production in factories and builds an automated artificial intelligence recognition model. Unlike previous literature that only uses a single classifier, this study uses multiple evaluation mechanisms to build the recognition model, which forms a machine learning model through texture feature extraction and a deep learning model through training different convolutional neural networks using transfer learning. This study proposes synthetic learning, which combines the advantages of machine learning and deep learning, and evaluates the comparison of using machine learning, deep learning, and different multiple evaluation mechanisms. The results show that using Confidence in synthetic learning to classify multiple evaluation mechanisms can improve the accuracy rate the most, from 96.00% to 97.83%, while Bagging provides a relatively stable accuracy rate improvement, both of which are about 0.7% higher than that of a single classifier. The synthetic learning can achieve the highest accuracy rate in defect detection and make the automation in smart manufacturing become practical.en_US
dc.description.tableofcontents 摘要 i
Abstract ii
目次 iii
表次 v
圖次 vi
第一章 緒論 1
1.1 工業4.0時代下的智慧製造 1
1.2 品質檢測 2
第二章 文獻探討 5
2.1 機器學習應用於瑕疵檢測 5
2.2 深度學習應用於瑕疵檢測 7
2.3 多重評估機制的瑕疵檢測 8
第三章 材料與方法 11
3.1 端子台影像資料集 12
3.2 單一分類模型 14
3.2.1機器學習(ML) 15
3.2.2 深度學習(DL) 17
3.3 合成式學習(synthesis) 24
3.3.1 Probability 24
3.3.2 Feature 25
3.3.3 Confidence 26
3.4 集成式學習(DL ensemble) 28
3.4.1 Bagging 28
3.4.2 Stacking 29
第四章 結果 31
4.1 單一分類模型 31
4.1.1 機器學習(ML) 31
4.1.2 深度學習(DL) 32
4.2 合成式學習 33
4.2.1 Probability 33
4.2.2 Feature 34
4.2.3 Confidence 35
4.3 集成式學習 36
4.3.1 Bagging 36
4.3.2 Stacking 36
4.4影像分類結果 37
第五章 討論與結論 40
第六章 未來展望 42
參考文獻 43
附錄一 特徵類別 56
附錄二 特徵算法與介紹 59
附錄三 Classification Learner 中8大類分類演算法 72
zh_TW
dc.format.extent 3341748 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0109155019en_US
dc.subject (關鍵詞) 瑕疵檢測zh_TW
dc.subject (關鍵詞) 深度學習zh_TW
dc.subject (關鍵詞) 機器學習zh_TW
dc.subject (關鍵詞) 合成式學習zh_TW
dc.subject (關鍵詞) 集成式學習zh_TW
dc.subject (關鍵詞) Defect detectionen_US
dc.subject (關鍵詞) Deep learningen_US
dc.subject (關鍵詞) Machine learningen_US
dc.subject (關鍵詞) Synthetic learningen_US
dc.subject (關鍵詞) Ensemble learningen_US
dc.title (題名) 多重品質評估機制的樣品影像分類zh_TW
dc.title (題名) Sample image classification with multiple quality evaluation mechanismen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) Agarwal, K., & Shivpuri, R. (2015). On line prediction of surface defects in hot bar rolling based on Bayesian hierarchical modeling. Journal of Intelligent Manufacturing, 26(4), 785-800. https://doi.org/10.1007/s10845-013-0834-y
Aghdam, S. R., Amid, E., & Imani, M. F. (2012, 18-20 July 2012). A fast method of steel surface defect detection using decision trees applied to LBP based features. 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA),
Allee, V. (2008). Value network analysis and value conversion of tangible and intangible assets. Journal of intellectual capital.
Amadasun, M., & King, R. (1989). Textural features corresponding to textural properties. IEEE Transactions on systems, man, and cybernetics, 19(5), 1264-1274.
Amid, E., Aghdam, S. R., & Amindavar, H. (2012). Enhanced Performance for Support Vector Machines as Multiclass Classifiers in Steel Surface Defect Detection. International Journal of Electrical and Computer Engineering, 6(7), 693-697.
Argyriou, A., Maurer, A., & Pontil, M. (2008, 2008//). An Algorithm for Transfer Learning in a Heterogeneous Environment. Machine Learning and Knowledge Discovery in Databases, Berlin, Heidelberg.
Bakır, B., Batmaz, İ., Güntürkün, F., İpekçi, İ. A., Köksal, G., & Özdemirel, N. (2006). Defect cause modeling with decision tree and regression analysis. World Acad Sci Eng Technoly, 24, 1-4.
Ballard, D. H., & Brown, C. M. (1982). Computer vision. englewood cliffs. J: Prentice Hall.
Bhandari, S. H., Deshpande, S., & Deshpande, S. (2008). A simple approach to surface defect detection. 2008 IEEE Region, 10, 8-10.
Boumahdi, M., Dron, J.-P., Rechak, S., & Cousinard, O. (2010). On the extraction of rules in the identification of bearing defects in rotating machinery using decision tree. Expert Systems with Applications, 37(8), 5887-5894. https://doi.org/https://doi.org/10.1016/j.eswa.2010.02.017
Brosnan, T., & Sun, D.-W. (2004). Improving quality inspection of food products by computer vision––a review. Journal of Food Engineering, 61(1), 3-16. https://doi.org/https://doi.org/10.1016/S0260-8774(03)00183-3
Choi, K., Koo, K., & Lee, J. S. (2006, 18-21 Oct. 2006). Development of Defect Classification Algorithm for POSCO Rolling Strip Surface Inspection System. 2006 SICE-ICASE International Joint Conference,
Czimmermann, T., Ciuti, G., Milazzo, M., Chiurazzi, M., Roccella, S., Oddo, C. M., & Dario, P. (2020). Visual-Based Defect Detection and Classification Approaches for Industrial Applications—A SURVEY. Sensors, 20(5). https://doi.org/10.3390/s20051459
Damacharla, P., A. R. M, V., Ringenberg, J., & Javaid, A. Y. (2021, 19-21 May 2021). TLU-Net: A Deep Learning Approach for Automatic Steel Surface Defect Detection. 2021 International Conference on Applied Artificial Intelligence (ICAPAI),
DARPA Information Processing Technology Office. (2005). Transfer Learning Proposer Information Pamphlet (PIP) for Broad Agency Announcement 05-29. http://logic.stanford.edu/tl/TransferLearningPIP.pdf
Diaz, R., Faus, G., Blasco, M., Blasco, J., & Moltó, E. (2000). The application of a fast algorithm for the classification of olives by machine vision. Food Research International, 33(3), 305-309. https://doi.org/https://doi.org/10.1016/S0963-9969(00)00041-7
Durden, J. M., Hosking, B., Bett, B. J., Cline, D., & Ruhl, H. A. (2021). Automated classification of fauna in seabed photographs: The impact of training and validation dataset size, with considerations for the class imbalance. Progress in Oceanography, 196, 102612. https://doi.org/https://doi.org/10.1016/j.pocean.2021.102612
Evans, P. C., & Annunziata, M. (2012). Industrial Internet: Pushing the Boundaries.
Fadli, V. F., & Herlistiono, I. O. (2020). Steel Surface Defect Detection using Deep Learning. Int. J. Innov. Sci. Res. Technol, 5, 244-250.
Galloway, M. M. (1975). Texture analysis using gray level run lengths. Computer graphics and image processing, 4(2), 172-179.
Ghosh, B., Bhuyan, M. K., Sasmal, P., Iwahori, Y., & Gadde, P. (2018, 7-9 Dec. 2018). Defect Classification of Printed Circuit Boards based on Transfer Learning. 2018 IEEE Applied Signal Processing Conference (ASPCON),
Grosan, C., & Abraham, A. (2011). Intelligent systems. Springer.
Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. IEEE Transactions on systems, man, and cybernetics(6), 610-621.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition,
Hemdan, E. E.-D., Shouman, M. A., & Karar, M. E. (2020). Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in x-ray images. arXiv preprint arXiv:2003.11055.
Henning, K. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0.
Hongbin, J., Murphey, Y. L., Jinajun, S., & Tzyy-Shuh, C. (2004, 26-26 Aug. 2004). An intelligent real-time vision system for surface defect detection. Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.,
Hou, D., Liu, T., Pan, Y., & Hou, J. (2019, 7-9 Jan. 2019). AI on edge device for laser chip defect detection. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC),
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition,
Jaiswal, A., Gianchandani, N., Singh, D., Kumar, V., & Kaur, M. (2021). Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning. Journal of Biomolecular Structure and Dynamics, 39(15), 5682-5689. https://doi.org/10.1080/07391102.2020.1788642
Jiang, B. C., Wang, C. C., & Chen, P. L. (2004). Logistic regression tree applied to classify PCB golden finger defects. The International Journal of Advanced Manufacturing Technology, 24(7), 496-502. https://doi.org/10.1007/s00170-002-1500-2
Kagermann, H., Wahlster, W., & Helbig, J. (2013). Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0 -- Securing the Future of German Manufacturing Industry. http://forschungsunion.de/pdf/industrie_4_0_final_report.pdf
Khanh, V., Hua, K. A., & Tavanapong, W. (2003). Image retrieval based on regions of interest. IEEE Transactions on Knowledge and Data Engineering, 15(4), 1045-1049. https://doi.org/10.1109/TKDE.2003.1209021
Kibira, D., Morris, K. C., & Kumaraguru, S. (2016). Methods and Tools for Performance Assurance of Smart Manufacturing Systems. Journal of research of the National Institute of Standards and Technology, 121, 282-313. https://doi.org/10.6028/jres.121.013
Kim, J., Kim, S., Kwon, N., Kang, H., Kim, Y., & Lee, C. (2018, 30 April-3 May 2018). Deep learning based automatic defect classification in through-silicon Via process: FA: Factory automation. 2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC),
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 1097-1105.
Kumar, A., & Jain, M. (2020). Why Ensemble Techniques Are Needed. In A. Kumar & M. Jain (Eds.), Ensemble Learning for AI Developers: Learn Bagging, Stacking, and Boosting Methods with Use Cases (pp. 1-10). Apress. https://doi.org/10.1007/978-1-4842-5940-5_1
Kumaresan, S., Aultrin, K. S. J., Kumar, S. S., & Anand, M. D. (2021). Transfer Learning With CNN for Classification of Weld Defect. IEEE Access, 9, 95097-95108. https://doi.org/10.1109/ACCESS.2021.3093487
Kyoung Min, K., Byung Jin, L., Kyoung, L., & Gwi Tae, P. (1999, 22-25 Aug. 1999). Design of a binary decision tree using the genetic algorithm and K-means algorithm for recognition of the defect patterns of cold mill strip. FUZZ-IEEE`99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315),
Labrinidis, A., & Jagadish, H. V. (2012). Challenges and opportunities with big data. Proc. VLDB Endow., 5(12), 2032–2033. https://doi.org/10.14778/2367502.2367572
Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., Van Stiphout, R. G. P. M., Granton, P., Zegers, C. M. L., Gillies, R., Boellard, R., Dekker, A., & Aerts, H. J. W. L. (2012). Radiomics: Extracting more information from medical images using advanced feature analysis. European Journal of Cancer, 48(4), 441-446. https://doi.org/10.1016/j.ejca.2011.11.036
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791
Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431-440. https://doi.org/https://doi.org/10.1016/j.bushor.2015.03.008
Lee, S. M., Lee, D., & Kim, Y. S. (2019). The quality management ecosystem for predictive maintenance in the Industry 4.0 era. International Journal of Quality Innovation, 5(1), 4. https://doi.org/10.1186/s40887-019-0029-5
Li, B.-h., Hou, B.-c., Yu, W.-t., Lu, X.-b., & Yang, C.-w. (2017). Applications of artificial intelligence in intelligent manufacturing: a review. Frontiers of Information Technology & Electronic Engineering, 18(1), 86-96. https://doi.org/10.1631/FITEE.1601885
Li, X., Li, D., Wan, J., Vasilakos, A. V., Lai, C.-F., & Wang, S. (2017). A review of industrial wireless networks in the context of Industry 4.0. Wireless Networks, 23(1), 23-41. https://doi.org/10.1007/s11276-015-1133-7
Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine Learning in Agriculture: A Review. Sensors, 18(8). https://doi.org/10.3390/s18082674
Lien, P. C., & Zhao, Q. (2018, 12-15 Aug. 2018). Product Surface Defect Detection Based on Deep Learning. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech),
Lu, T., Han, B., Chen, L., Yu, F., & Xue, C. (2021). A generic intelligent tomato classification system for practical applications using DenseNet-201 with transfer learning. Scientific Reports, 11(1), 15824. https://doi.org/10.1038/s41598-021-95218-w
Nakashima, K., Nagata, F., Ochi, H., Otsuka, A., Ikeda, T., Watanabe, K., & Habib, M. K. (2021). Detection of minute defects using transfer learning-based CNN models. Artificial Life and Robotics, 26(1), 35-41. https://doi.org/10.1007/s10015-020-00618-2
Napierala, K., & Stefanowski, J. (2016). Types of minority class examples and their influence on learning classifiers from imbalanced data. Journal of Intelligent Information Systems, 46(3), 563-597. https://doi.org/10.1007/s10844-015-0368-1
Narayanan, B. N., Beigh, K., Loughnane, G., & Powar, N. (2019). Support vector machine and convolutional neural network based approaches for defect detection in fused filament fabrication. Applications of Machine Learning,
NIST, N. I. o. S. a. T. (2021). Product Definitions for Smart Manufacturing. https://www.nist.gov/programs-projects/product-definitions-smart-manufacturing
Pan, S. J., & Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345-1359. https://doi.org/10.1109/TKDE.2009.191
Patel, K. K., Kar, A., Jha, S. N., & Khan, M. A. (2012). Machine vision system: a tool for quality inspection of food and agricultural products. Journal of Food Science and Technology, 49(2), 123-141. https://doi.org/10.1007/s13197-011-0321-4
Patel, S. V., & Jokhakar, V. N. (2016, 15-17 Dec. 2016). A random forest based machine learning approach for mild steel defect diagnosis. 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC),
Pernkopf, F. (2004). Detection of surface defects on raw steel blocks using Bayesian network classifiers. Pattern Analysis and Applications, 7(3), 333-342. https://doi.org/10.1007/BF02683998
Petrou, M. M., & Petrou, C. (2010). Image processing: the fundamentals. John Wiley & Sons.
ping Tian, D. (2013). A review on image feature extraction and representation techniques. International Journal of Multimedia and Ubiquitous Engineering, 8(4), 385-396.
Porter, M. E., & Porter, M. E. (1983). Cases in competitive strategy / Michael E. Porter. Free Press.
Qiang, Z., He, L., & Dai, F. (2019, 2019//). Identification of Plant Leaf Diseases Based on Inception V3 Transfer Learning and Fine-Tuning. Smart City and Informatization, Singapore.
Refaeilzadeh, P., Tang, L., & Liu, H. (2009). Cross-validation. Encyclopedia of database systems, 5, 532-538.
Saqlain, M., Jargalsaikhan, B., & Lee, J. Y. (2019). A Voting Ensemble Classifier for Wafer Map Defect Patterns Identification in Semiconductor Manufacturing. IEEE Transactions on Semiconductor Manufacturing, 32(2), 171-182. https://doi.org/10.1109/TSM.2019.2904306
Shattuck, D. W., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr, K. L., Poldrack, R. A., Bilder, R. M., & Toga, A. W. (2008). Construction of a 3D probabilistic atlas of human cortical structures. NeuroImage, 39(3), 1064-1080. https://doi.org/https://doi.org/10.1016/j.neuroimage.2007.09.031
Shen, Z., & Yu, J. (2019, 15-18 Dec. 2019). Wafer Map Defect Recognition Based on Deep Transfer Learning. 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM),
Su, K., Zhao, Q., & Lien, P. C. (2019, 5-8 Aug. 2019). Product Surface Defect Detection Based on CNN Ensemble with Rejection. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech),
Sun, C., & Wee, W. G. (1983). Neighboring gray level dependence matrix for texture classification. Computer Vision, Graphics, and Image Processing, 23(3), 341-352.
Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, inception-resnet and the impact of residual connections on learning. Thirty-first AAAI conference on artificial intelligence,
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition,
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition,
Thalagala, S., & Walgampaya, C. (2021, 16-16 Sept. 2021). Application of AlexNet convolutional neural network architecture-based transfer learning for automated recognition of casting surface defects. 2021 International Research Conference on Smart Computing and Systems Engineering (SCSE),
Thibault, G., Fertil, B., Navarro, C., Pereira, S., Cau, P., Lévy, N., Sequeira, J., & Mari, J.-L. (2009). Texture indexes and gray level size zone matrix. Application to cell nuclei classification. 10th International Conference on Pattern Recognition and Information Processing, PRIP 2009,
van Griethuysen, J. J. M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R. G. H., Fillion-Robin, J.-C., Pieper, S., & Aerts, H. J. W. L. (2017). Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Research, 77(21), e104. https://doi.org/10.1158/0008-5472.CAN-17-0339
van Griethuysen, J. J. M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R. G. H., Fillion-Robin, J.-C., Pieper, S., & Aerts, H. J. W. L. (2017). Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Research, 77(21), e104-e107. https://doi.org/10.1158/0008-5472.Can-17-0339
Wagner, S. (2014, 7-10 July 2014). Combination of convolutional feature extraction and support vector machines for radar ATR. 17th International Conference on Information Fusion (FUSION),
Wan, J., Tang, S., Li, D., Wang, S., Liu, C., Abbas, H., & Vasilakos, A. V. (2017). A Manufacturing Big Data Solution for Active Preventive Maintenance. IEEE Transactions on Industrial Informatics, 13(4), 2039-2047. https://doi.org/10.1109/TII.2017.2670505
Wang, Y., Xia, H., Yuan, X., Li, L., & Sun, B. (2018). Distributed defect recognition on steel surfaces using an improved random forest algorithm with optimal multi-feature-set fusion. Multimedia Tools and Applications, 77(13), 16741-16770. https://doi.org/10.1007/s11042-017-5238-0
Wu, H., Zhang, X., Xie, H., Kuang, Y., & Ouyang, G. (2013). Classification of Solder Joint Using Feature Selection Based on Bayes and Support Vector Machine. IEEE Transactions on Components, Packaging and Manufacturing Technology, 3(3), 516-522. https://doi.org/10.1109/TCPMT.2012.2231902
Xu, X. (2012). From cloud computing to cloud manufacturing. Robotics and Computer-Integrated Manufacturing, 28(1), 75-86. https://doi.org/https://doi.org/10.1016/j.rcim.2011.07.002
Yang, J., Li, S., Wang, Z., Dong, H., Wang, J., & Tang, S. (2020). Using Deep Learning to Detect Defects in Manufacturing: A Comprehensive Survey and Current Challenges. Materials, 13(24). https://doi.org/10.3390/ma13245755
Zhang, H., Chen, Z., Zhang, C., Xi, J., & Le, X. (2019, 22-26 Aug. 2019). Weld Defect Detection Based on Deep Learning Method. 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE),
Zhang, Z., Yang, Z., Ren, W., & Wen, G. (2019). Random forest-based real-time defect detection of Al alloy in robotic arc welding using optical spectrum. Journal of Manufacturing Processes, 42, 51-59. https://doi.org/https://doi.org/10.1016/j.jmapro.2019.04.023
Zhou, J. (2015). Intelligent Manufacturing——Main Direction of" Made in China 2025". China Mechanical Engineering, 26(17), 2273.
Zhu, H., Ge, W., & Liu, Z. (2019). Deep Learning-Based Classification of Weld Surface Defects. Applied Sciences, 9(16). https://doi.org/10.3390/app9163312
Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2021). A Comprehensive Survey on Transfer Learning. Proceedings of the IEEE, 109(1), 43-76. https://doi.org/10.1109/jproc.2020.3004555
町洋企業股份有限公司. (2021). 產業應用. https://www.dinkle.com/tw/application/application.php
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU202201201en_US