學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

題名 以微影製程製備鉍-銻-碲熱電晶片於能獲與溫度感測之應用
Fabrication of Bi-Sb-Te thermoelectric chips by lithography for energy harvesting and temperature detecting
作者 張家豪
Chang, Chia-Hao
貢獻者 陳洋元
Chen, Yang-Yuan
張家豪
Chang, Chia-Hao
關鍵詞 熱電晶片
熱電材料
濺鍍
微影製程
Thermoelectric chips
Thermoelectric materials
Sputtering
Lithography
日期 2022
上傳時間 2-Sep-2022 15:06:38 (UTC+8)
摘要 許多看不見的熱能存在於生活當中,如人體發出的溫度;而現今透過熱電晶片,我們能捕獲生活中未善加利用的熱能,且因其尺寸較小且輕薄,僅需要透過體溫與自然之間的溫差,就能輕易捕獲廢熱。如此獲取熱能的技術甚至能使3C穿戴式裝置能在續航與充電上有所突破。
製備熱電晶片第一步透過濺鍍(Sputtering)沉積直徑為1 mm,高為9 μm的P型Bi0.5Sb1.5Te3和N型CuI0.02Bi2Te2.7Se0.3的圓柱,材料沉積在鉻、金下電極上(下電極由電子束蒸鍍機沉積),而第二步則是懸塗負光阻SU-8作為支撐層,利用半導體製程中的微影(Lithography),定義出0.8 mm大小的孔洞在P型和N型柱上,經過蝕刻處理後,透過顆粒紙拋光殘留在P型和N型孔洞旁多餘的光阻,確保晶片為平面後,便再蒸鍍鉻、金作為上電極,作為串連導線,便完成熱電晶片的製作。
本篇透過共濺鍍選擇不同元素比例,以此獲得室溫下較佳熱電性質的N型半導體材料。以Bi2Te3組合為基礎,透過參雜較高比例的碲Te元素,室溫下共濺鍍出的Bi1.6Te3.4的席貝克係數(Seebeck) 為-122.8 μV/K。
本篇製備的熱電晶片在4吋矽晶圓上,可分割出四個區塊、單一區塊面積為9平方公分,且每個區塊內含有128對圓柱狀的P型和N型半導體材料、兩者高度皆為9 μm高。該熱電晶片利用紅外光在晶片上方加熱建立出~5°C的溫差下,可得到10 mV的開路電壓,席貝克係數為2.0 mV/K。利用加熱板加熱晶片下方,建立6.8 °C溫差,在120 Ω負載時最大電壓為0.51 mV,功率為2.08×10-9 W。
未來如提升熱電材料性質以及採用更多對數的π-type,使晶片有更大的電壓輸出,就能拓展熱電晶片在生活中的應用,使生活中的廢熱能透過熱電晶片和熱電元件轉換為乾淨能源被人們所用。
Many invisible heat sources exist in our lives, such as the temperature emitted by the human body. Nowadays, through thermoelectric chips, we can capture unused heat in our lives, and because of their small size and thinness, they can easily capture waste heat through the temperature difference between body temperature and nature. This technology of capturing heat energy can even enable 3C wearable devices to make a breakthrough in battery life and charging.
In the first step of preparing thermoelectric chips, P-type Bi0.5Sb1.5Te3 and N-type CuI0.02Bi2Te2.7Se0.3 cylinders with a diameter of 1 mm and a height of 9 μm are deposited by sputtering on chromium and gold lower electrodes (the lower electrodes are deposited by an electron beam vaporizer). In the second step, negative photoresist SU-8 is applied as a support layer, and 0.8 mm sized holes are defined on the P- and N-pillars by using lithography in the semiconductor process. After the etching process, the residual photoresist is polished by particle paper to ensure the wafer is flat, and then chromium and gold are vaporized as the upper electrode and used as a series wire to complete the thermoelectric chips fabrication.
In this paper, we select different element ratios by co-sputtering to obtain N-type semiconductor materials with better thermoelectric properties at room temperature. Based on the Bi2Te3 combination, the Seebeck coefficient of Bi1.6Te3.4 is -122.8 μV/K at room temperature by adding a higher proportion of tellurium Te elements.
The thermoelectric chips prepared in this paper can be divided into four blocks on a 4-inch silicon wafer, each containing 128 pairs of cylindrical P-type and N-type semiconductor materials, with a single block area of 9 square centimeters and a height of 9 μm for P-type and N-type materials. The thermoelectric chip is heated by infrared light above the chip to establish a temperature difference of ~5°C, resulting in an open-circuit voltage of 10 mV with a Seebeck factor of 2.0 mV/K. The maximum voltage is 0.51 mV and power is 2.08 × 10-9 W at a 120 Ω load at a temperature difference of 6.8°C using a hot plate to heat the underside of the wafer.
In the future, if the nature of the thermoelectric materials is improved and more logarithmic π-type is used to make the chip have a larger voltage output, the application of thermoelectric chips in life can be expanded, so that the waste heat in life can be converted into clean energy through the thermoelectric chips and thermoelectric elements.
參考文獻 [1] 陳洋元、陳正龍(2020年)。熱電於再生能源之運用。物理雙月刊。
[2] Schaevitz, S. B., Franz, A. J., Jensen, K. F., & Schmidt, M. A. (2001). A combustion-based MEMS thermoelectric power generator. In Transducers’ 01 Eurosensors XV (pp. 30-33). Springer, Berlin, Heidelberg.
[3] 劉威廷(2020年)。鉍-銻-碲熱電薄膜製備及其熱電轉換應用研究。國立政治大學應用物理研究所。
[4] 國立嘉義大學(2008年)。電子束蒸鍍系統。國立嘉義大學貴重儀器中心。
[5] Trung, N. H., Van Toan, N., & Ono, T. (2017). Fabrication of π-type flexible thermoelectric generators using an electrochemical deposition method for thermal energy harvesting applications at room temperature. Journal of micromechanics and microengineering, 27(12), 125006.
[6] Holloway, P. H. (1979). Gold/chromium metallizations for electronic devices. Gold Bulletin, 12(3), 99-106.
[7] TRANSACTIONS, T. (2017). A Mobile Tropical Cooling System Design Using a Thermoelectric Module.
[8] 黃振東、徐振庭(2013年6月)。熱電材料。科學發展,486,48-53。
[9] 經濟部能源局。能源統計。擷取於2022年05月20日。
https://www.moeaboe.gov.tw/ECW/populace/content/Content.aspx?menu_id=14437
[10] Champier, D., Bédécarrats, J. P., Kousksou, T., Rivaletto, M., Strub, F., & Pignolet, P. (2011). Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove. Energy, 36(3), 1518-1526.
[11] 凌力爾特公司(2013年)。採用超低電壓轉換器改善從熱電能源的能量收集。凌力爾特。
[12] K. Technologies(2015年)。智慧型手錶功耗分析全記錄。Keysight Technologies。
[13] Choi, Y. H., Kim, M. G., Kang, D. H., Sim, J., Kim, J., & Kim, Y. J. (2012). An electrodynamic preconcentrator integrated thermoelectric biosensor chip for continuous monitoring of biochemical process. Journal of Micromechanics and Microengineering, 22(4), 045022.
[14] Bell, L. E. (2008). Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 321(5895), 1457-1461.
[15] 朱旭山(2004年)。熱電材料與元件之原理與應用。電子與材料雜誌,22,78-89。
[16] Macia, E. (Ed.). (2015). Thermoelectric materials: advances and applications.
[17] Hsiao, J. C., Chen, Y. H., & Liao, C. N. (2018). Anisotropic thermal conductivity of sputtered Bi0. 5Sb1. 5Te3 films after current-assisted thermal treatment. Thin Solid Films, 645, 93-96.
[18] Siddique, A. R. M., Mahmud, S., & Van Heyst, B. (2017). A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renewable and Sustainable Energy Reviews, 73, 730-744.
[19] Bjørk, R., Christensen, D. V., Eriksen, D., & Pryds, N. (2014). Analysis of the internal heat losses in a thermoelectric generator. International Journal of Thermal Sciences, 85, 12-20.
[20] Schaevitz, S. B. (2000). A MEMS thermoelectric generator (Doctoral dissertation, Massachusetts Institute of Technology).
[21] Snyder, G. J., Lim, J. R., Huang, C. K., & Fleurial, J. P. (2003). Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nature materials, 2(8), 528-531.
[22] Liu, S., Hu, B., Liu, D., Li, F., Li, J. F., Li, B., ... & Nan, C. W. (2018). Micro-thermoelectric generators based on through glass pillars with high output voltage enabled by large temperature difference. Applied Energy, 225, 600-610.
[23] Snyder, G. J., Lim, J. R., Huang, C. K., & Fleurial, J. P. (2003). Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nature materials, 2(8), 528-531.
[24] 國立台北科技大學(2021年11月)。射頻磁控濺鍍機(RF magnetron sputter)使用及管理辦法。國立台北科技大學奈米光電磁材料技術研發中心。
[25] 曾泰銓(2007年)。濺鍍鈀與氧化鈀薄膜應用於奈米裂隙電極製作研究,。碩士論文,國立交通大學材料科學與工程學系。
[26] 蔡信行、孫光中(2004年)。奈米科技導論-基本原理及應用。新文京開發出版股份有限公司。
[27] 謝樹恩、吳泰伯(2005年)。X光繞射原理與材料結構分析。新竹中國材料科學學會。
[28] Flores-Conde, A., Díaz-Torres, E., Ortega-Amaya, R., & Ortega-López, M. (2018). Study of the electronic transport in the semiconducting Bi0. 5Sb1. 5Te3 and Bi1. 5Sb0. 5Te3 alloys. Journal of Materials Science: Materials in Electronics, 29(18), 15658-15663.
[29] Yan, X., Poudel, B., Ma, Y., Liu, W. S., Joshi, G., Wang, H., ... & Ren, Z. F. (2010). Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2. 7Se0. 3. Nano letters, 10(9), 3373-3378.
[30] Norimasa, O., Kurokawa, T., Eguchi, R., & Takashiri, M. (2021). Evaluation of thermoelectric performance of Bi2Te3 films as a function of temperature increase rate during heat treatment. Coatings, 11(1), 38.
[31] Jeon, S. J., Oh, M., Jeon, H., Hyun, S., & Lee, H. J. (2011). Effects of post-annealing on thermoelectric properties of bismuth–tellurium thin films deposited by co-sputtering. Microelectronic engineering, 88(5), 541-544.
[32] Bedoya-Hincapié, C. M., de la Roche, J., Restrepo-Parra, E., Alfonso, J. E., & Olaya-Florez, J. J. (2015). Structural and morphological behavior of bismuth thin films grown through DC-magnetron sputtering. Ingeniare. Revista chilena de ingeniería, 23(1), 92-97.
描述 碩士
國立政治大學
應用物理研究所
109755003
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0109755003
資料類型 thesis
dc.contributor.advisor 陳洋元zh_TW
dc.contributor.advisor Chen, Yang-Yuanen_US
dc.contributor.author (Authors) 張家豪zh_TW
dc.contributor.author (Authors) Chang, Chia-Haoen_US
dc.creator (作者) 張家豪zh_TW
dc.creator (作者) Chang, Chia-Haoen_US
dc.date (日期) 2022en_US
dc.date.accessioned 2-Sep-2022 15:06:38 (UTC+8)-
dc.date.available 2-Sep-2022 15:06:38 (UTC+8)-
dc.date.issued (上傳時間) 2-Sep-2022 15:06:38 (UTC+8)-
dc.identifier (Other Identifiers) G0109755003en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/141646-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用物理研究所zh_TW
dc.description (描述) 109755003zh_TW
dc.description.abstract (摘要) 許多看不見的熱能存在於生活當中,如人體發出的溫度;而現今透過熱電晶片,我們能捕獲生活中未善加利用的熱能,且因其尺寸較小且輕薄,僅需要透過體溫與自然之間的溫差,就能輕易捕獲廢熱。如此獲取熱能的技術甚至能使3C穿戴式裝置能在續航與充電上有所突破。
製備熱電晶片第一步透過濺鍍(Sputtering)沉積直徑為1 mm,高為9 μm的P型Bi0.5Sb1.5Te3和N型CuI0.02Bi2Te2.7Se0.3的圓柱,材料沉積在鉻、金下電極上(下電極由電子束蒸鍍機沉積),而第二步則是懸塗負光阻SU-8作為支撐層,利用半導體製程中的微影(Lithography),定義出0.8 mm大小的孔洞在P型和N型柱上,經過蝕刻處理後,透過顆粒紙拋光殘留在P型和N型孔洞旁多餘的光阻,確保晶片為平面後,便再蒸鍍鉻、金作為上電極,作為串連導線,便完成熱電晶片的製作。
本篇透過共濺鍍選擇不同元素比例,以此獲得室溫下較佳熱電性質的N型半導體材料。以Bi2Te3組合為基礎,透過參雜較高比例的碲Te元素,室溫下共濺鍍出的Bi1.6Te3.4的席貝克係數(Seebeck) 為-122.8 μV/K。
本篇製備的熱電晶片在4吋矽晶圓上,可分割出四個區塊、單一區塊面積為9平方公分,且每個區塊內含有128對圓柱狀的P型和N型半導體材料、兩者高度皆為9 μm高。該熱電晶片利用紅外光在晶片上方加熱建立出~5°C的溫差下,可得到10 mV的開路電壓,席貝克係數為2.0 mV/K。利用加熱板加熱晶片下方,建立6.8 °C溫差,在120 Ω負載時最大電壓為0.51 mV,功率為2.08×10-9 W。
未來如提升熱電材料性質以及採用更多對數的π-type,使晶片有更大的電壓輸出,就能拓展熱電晶片在生活中的應用,使生活中的廢熱能透過熱電晶片和熱電元件轉換為乾淨能源被人們所用。
zh_TW
dc.description.abstract (摘要) Many invisible heat sources exist in our lives, such as the temperature emitted by the human body. Nowadays, through thermoelectric chips, we can capture unused heat in our lives, and because of their small size and thinness, they can easily capture waste heat through the temperature difference between body temperature and nature. This technology of capturing heat energy can even enable 3C wearable devices to make a breakthrough in battery life and charging.
In the first step of preparing thermoelectric chips, P-type Bi0.5Sb1.5Te3 and N-type CuI0.02Bi2Te2.7Se0.3 cylinders with a diameter of 1 mm and a height of 9 μm are deposited by sputtering on chromium and gold lower electrodes (the lower electrodes are deposited by an electron beam vaporizer). In the second step, negative photoresist SU-8 is applied as a support layer, and 0.8 mm sized holes are defined on the P- and N-pillars by using lithography in the semiconductor process. After the etching process, the residual photoresist is polished by particle paper to ensure the wafer is flat, and then chromium and gold are vaporized as the upper electrode and used as a series wire to complete the thermoelectric chips fabrication.
In this paper, we select different element ratios by co-sputtering to obtain N-type semiconductor materials with better thermoelectric properties at room temperature. Based on the Bi2Te3 combination, the Seebeck coefficient of Bi1.6Te3.4 is -122.8 μV/K at room temperature by adding a higher proportion of tellurium Te elements.
The thermoelectric chips prepared in this paper can be divided into four blocks on a 4-inch silicon wafer, each containing 128 pairs of cylindrical P-type and N-type semiconductor materials, with a single block area of 9 square centimeters and a height of 9 μm for P-type and N-type materials. The thermoelectric chip is heated by infrared light above the chip to establish a temperature difference of ~5°C, resulting in an open-circuit voltage of 10 mV with a Seebeck factor of 2.0 mV/K. The maximum voltage is 0.51 mV and power is 2.08 × 10-9 W at a 120 Ω load at a temperature difference of 6.8°C using a hot plate to heat the underside of the wafer.
In the future, if the nature of the thermoelectric materials is improved and more logarithmic π-type is used to make the chip have a larger voltage output, the application of thermoelectric chips in life can be expanded, so that the waste heat in life can be converted into clean energy through the thermoelectric chips and thermoelectric elements.
en_US
dc.description.tableofcontents 致謝 I
摘要 II
Abstract III
目錄 V
表目錄 IX
圖目錄 XI
第一章 緒論 1
1.1 研究背景與動機 1
1.2 碲化鉍Bi2Te3熱電元件概述 2
1.3 熱電元件未來發展 6
第二章 文獻回顧與理論基礎 8
2.1 熱電領域的發展 8
2.2 席貝克效應(Seebeck Effect) 9
2.3 帕爾帖效應(Peltier Effect) 10
2.4 湯姆森效應(Thomson Effect) 11
2.5 熱傳導率 (Thermal Conductivity) 12
2.5.1 電子熱傳導 13
2.5.2 聲子熱傳導 14
2.6 電導率 (Electrical Conductivity) 15
2.7 席貝克係數 (Seebeck Coefficient) 17
2.8 熱電優值 20
第三章 熱電晶片基本構造與製程 22
3.1 薄膜型熱電晶片基本架構 22
3.1.1 熱電晶片製備流程 24
3.2 實驗儀器介紹 27
3.2.1 球磨機(Ball Mill) 27
3.2.2 火花電漿燒結系統(Spark Plasma Sintering System) 28
3.2.3 帶鋸機(Band Saw Machine) 29
3.2.4 電子束熱蒸鍍系統(E-beam Evaporator) 29
3.2.5 濺鍍系統(Radio Frequency Magnetron Sputter) 31
3.2.6 膜厚感測器 (Front Load Single Sensor) 33
3.2.7 反應式離子蝕刻機(Reactive ion etching) 34
3.2.8 光阻旋塗機(Photo Resist Spinner) 35
3.2.9 加熱板(Hot Plate) 35
3.2.10 黃光微影曝光機(Mask Aligner) 36
3.3 量測儀器介紹 37
3.3.1 場發射掃描式電子顯微鏡(SEM) 37
3.3.2 X光繞射儀(XRD) 38
3.3.3 熱電性質量測系統ZEM-3 39
3.4 熱電半導體濺鍍靶材製作 41
3.4.1 混和元素 41
3.4.2 球磨並壓製靶材 42
3.4.3 退靶與黏製靶材 42
3.5 熱電晶片製程 43
3.5.1 清洗4吋基板 43
3.5.2 固定金屬遮罩 43
3.5.3 下電極製作 44
3.5.4 沉積P型半導體熱電材料 45
3.5.5 沉積N型半導體熱電材料 47
3.5.6 旋塗光阻以及蝕刻 48
3.5.7 拋光晶片使其表面平坦化 50
3.5.8 蒸鍍上電極完成晶片 50
第四章 結果與討論 52
4.1 P型Bi0.5Sb1.5Te3熱電材料 52
4.1.1 濺鍍P型熱電材料的鍍率 53
4.1.2 P型熱電材料EDS分析 54
4.1.3 P型熱電材料的熱電性質 55
4.2 N型Bi2Te3熱電材料 55
4.2.1 濺鍍N型熱電材料的鍍率 56
4.2.2 N型熱電材料EDS分析 61
4.2.3 N型熱電材料的熱電性質 64
4.2.4 共濺鍍N型熱電材料與基板脫落 65
4.3 極薄金屬遮罩對製程的影響 66
4.3.1 先鍍π-type 66
4.3.2 懸塗光阻參數 67
4.3.3晶片平坦化 68
4.5 元件量測 70
4.5.1 儀器架設 70
4.5.2 蒸鍍上電極前量測EMF、Seebeck 71
4.5.3 蒸鍍上電極後量測EMF、Seebeck 74
4.5.4 晶片負載測試 84
4.5.5 晶片EMF結果探討 86
4.5.6 矽基板發生導通 87
4.5.7 晶片塗上石墨塗層幫助吸熱 89
第五章 結論 90
參考文獻 91
zh_TW
dc.format.extent 8150102 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0109755003en_US
dc.subject (關鍵詞) 熱電晶片zh_TW
dc.subject (關鍵詞) 熱電材料zh_TW
dc.subject (關鍵詞) 濺鍍zh_TW
dc.subject (關鍵詞) 微影製程zh_TW
dc.subject (關鍵詞) Thermoelectric chipsen_US
dc.subject (關鍵詞) Thermoelectric materialsen_US
dc.subject (關鍵詞) Sputteringen_US
dc.subject (關鍵詞) Lithographyen_US
dc.title (題名) 以微影製程製備鉍-銻-碲熱電晶片於能獲與溫度感測之應用zh_TW
dc.title (題名) Fabrication of Bi-Sb-Te thermoelectric chips by lithography for energy harvesting and temperature detectingen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] 陳洋元、陳正龍(2020年)。熱電於再生能源之運用。物理雙月刊。
[2] Schaevitz, S. B., Franz, A. J., Jensen, K. F., & Schmidt, M. A. (2001). A combustion-based MEMS thermoelectric power generator. In Transducers’ 01 Eurosensors XV (pp. 30-33). Springer, Berlin, Heidelberg.
[3] 劉威廷(2020年)。鉍-銻-碲熱電薄膜製備及其熱電轉換應用研究。國立政治大學應用物理研究所。
[4] 國立嘉義大學(2008年)。電子束蒸鍍系統。國立嘉義大學貴重儀器中心。
[5] Trung, N. H., Van Toan, N., & Ono, T. (2017). Fabrication of π-type flexible thermoelectric generators using an electrochemical deposition method for thermal energy harvesting applications at room temperature. Journal of micromechanics and microengineering, 27(12), 125006.
[6] Holloway, P. H. (1979). Gold/chromium metallizations for electronic devices. Gold Bulletin, 12(3), 99-106.
[7] TRANSACTIONS, T. (2017). A Mobile Tropical Cooling System Design Using a Thermoelectric Module.
[8] 黃振東、徐振庭(2013年6月)。熱電材料。科學發展,486,48-53。
[9] 經濟部能源局。能源統計。擷取於2022年05月20日。
https://www.moeaboe.gov.tw/ECW/populace/content/Content.aspx?menu_id=14437
[10] Champier, D., Bédécarrats, J. P., Kousksou, T., Rivaletto, M., Strub, F., & Pignolet, P. (2011). Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove. Energy, 36(3), 1518-1526.
[11] 凌力爾特公司(2013年)。採用超低電壓轉換器改善從熱電能源的能量收集。凌力爾特。
[12] K. Technologies(2015年)。智慧型手錶功耗分析全記錄。Keysight Technologies。
[13] Choi, Y. H., Kim, M. G., Kang, D. H., Sim, J., Kim, J., & Kim, Y. J. (2012). An electrodynamic preconcentrator integrated thermoelectric biosensor chip for continuous monitoring of biochemical process. Journal of Micromechanics and Microengineering, 22(4), 045022.
[14] Bell, L. E. (2008). Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 321(5895), 1457-1461.
[15] 朱旭山(2004年)。熱電材料與元件之原理與應用。電子與材料雜誌,22,78-89。
[16] Macia, E. (Ed.). (2015). Thermoelectric materials: advances and applications.
[17] Hsiao, J. C., Chen, Y. H., & Liao, C. N. (2018). Anisotropic thermal conductivity of sputtered Bi0. 5Sb1. 5Te3 films after current-assisted thermal treatment. Thin Solid Films, 645, 93-96.
[18] Siddique, A. R. M., Mahmud, S., & Van Heyst, B. (2017). A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renewable and Sustainable Energy Reviews, 73, 730-744.
[19] Bjørk, R., Christensen, D. V., Eriksen, D., & Pryds, N. (2014). Analysis of the internal heat losses in a thermoelectric generator. International Journal of Thermal Sciences, 85, 12-20.
[20] Schaevitz, S. B. (2000). A MEMS thermoelectric generator (Doctoral dissertation, Massachusetts Institute of Technology).
[21] Snyder, G. J., Lim, J. R., Huang, C. K., & Fleurial, J. P. (2003). Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nature materials, 2(8), 528-531.
[22] Liu, S., Hu, B., Liu, D., Li, F., Li, J. F., Li, B., ... & Nan, C. W. (2018). Micro-thermoelectric generators based on through glass pillars with high output voltage enabled by large temperature difference. Applied Energy, 225, 600-610.
[23] Snyder, G. J., Lim, J. R., Huang, C. K., & Fleurial, J. P. (2003). Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nature materials, 2(8), 528-531.
[24] 國立台北科技大學(2021年11月)。射頻磁控濺鍍機(RF magnetron sputter)使用及管理辦法。國立台北科技大學奈米光電磁材料技術研發中心。
[25] 曾泰銓(2007年)。濺鍍鈀與氧化鈀薄膜應用於奈米裂隙電極製作研究,。碩士論文,國立交通大學材料科學與工程學系。
[26] 蔡信行、孫光中(2004年)。奈米科技導論-基本原理及應用。新文京開發出版股份有限公司。
[27] 謝樹恩、吳泰伯(2005年)。X光繞射原理與材料結構分析。新竹中國材料科學學會。
[28] Flores-Conde, A., Díaz-Torres, E., Ortega-Amaya, R., & Ortega-López, M. (2018). Study of the electronic transport in the semiconducting Bi0. 5Sb1. 5Te3 and Bi1. 5Sb0. 5Te3 alloys. Journal of Materials Science: Materials in Electronics, 29(18), 15658-15663.
[29] Yan, X., Poudel, B., Ma, Y., Liu, W. S., Joshi, G., Wang, H., ... & Ren, Z. F. (2010). Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2. 7Se0. 3. Nano letters, 10(9), 3373-3378.
[30] Norimasa, O., Kurokawa, T., Eguchi, R., & Takashiri, M. (2021). Evaluation of thermoelectric performance of Bi2Te3 films as a function of temperature increase rate during heat treatment. Coatings, 11(1), 38.
[31] Jeon, S. J., Oh, M., Jeon, H., Hyun, S., & Lee, H. J. (2011). Effects of post-annealing on thermoelectric properties of bismuth–tellurium thin films deposited by co-sputtering. Microelectronic engineering, 88(5), 541-544.
[32] Bedoya-Hincapié, C. M., de la Roche, J., Restrepo-Parra, E., Alfonso, J. E., & Olaya-Florez, J. J. (2015). Structural and morphological behavior of bismuth thin films grown through DC-magnetron sputtering. Ingeniare. Revista chilena de ingeniería, 23(1), 92-97.
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU202201453en_US