dc.contributor.advisor | 甯方璽<br>儲豐宥 | zh_TW |
dc.contributor.advisor | Fang, Shi-Ning<br>Chu, Feng-You | en_US |
dc.contributor.author (Authors) | 蔡欣彤 | zh_TW |
dc.contributor.author (Authors) | Tsai, Hsin-Tong | en_US |
dc.creator (作者) | 蔡欣彤 | zh_TW |
dc.creator (作者) | Tsai, Hsin-Tong | en_US |
dc.date (日期) | 2022 | en_US |
dc.date.accessioned | 2-Sep-2022 15:20:45 (UTC+8) | - |
dc.date.available | 2-Sep-2022 15:20:45 (UTC+8) | - |
dc.date.issued (上傳時間) | 2-Sep-2022 15:20:45 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0109257029 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/141714 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 地政學系 | zh_TW |
dc.description (描述) | 109257029 | zh_TW |
dc.description.abstract (摘要) | 隨著全球導航定位系統(Global Navigation Satellite System, GNSS)的發展,精密單點定位(Precise Point Positioning, PPP)及即時動態定位(Real Time Kinematic, RTK)技術已經可以達到公分級的精度。小米8為全球首款雙頻五星系智慧型手機,其所接收的載波相位觀測量過去幾年已被不少學者用來以RTK、PPP的定位效能評估其是否能達成大地型接收機的定位精度,但各研究使用的定位方法以及對於小米8的擺放姿態不盡相同,且目前尚未看到有文獻將小米8擺放姿態納入考量。因此,本實驗欲以手機的擺放姿態做為操縱變因,探討不同的擺放姿態下對智慧型手機小米8在RTK以及PPP定位效能造成的影響。本實驗分別將小米8豎直和平放以一秒收蒐集兩個小時的觀測資料,兩筆資料以RTK及PPP定位方法解算,分別分析其定位效能。除此之外,本實驗亦分析多星系和GPS-only的觀測資料於RTK、PPP時的定位效能,比較二者的差異。實驗成果顯示當使用GPS-only的觀測資料時,當小米8的擺放姿態為豎直時,其定位效能在RTK及PPP方面皆優於平放;當我們使用multi-GNSS觀測資料進行五星系(GPS/Galileo/BDS/GLONASS/QZSS)的RTK及三星系(GPS/Galileo/QZSS)的PPP解算時,其定位效能皆優於僅使用GPS–only的觀測資料;且當小米8的擺放姿態為豎直時,若使用multi-GNSS觀測資料進行五星系RTK解算,則可以達到水平、垂直方向10公分上下的定位精度。 | zh_TW |
dc.description.abstract (摘要) | With the development of Global Navigation Satellite System (GNSS), Precise Point Positioning (PPP) and Real Time Kinematic (RTK) technologies can provide a precise solution to cm-level. Xiaomi Mi 8 is the world`s first smartphone that can receive dual-frequency and five- constellation GNSS observation. In the past few years, many scholars have used the observation data of Mi 8 to evaluate whether it can achieve the positioning accuracy of the geodetic receiver based on the positioning performance of RTK and PPP. However, the position methods and the Mi 8 attitudes used by each research are different, and no literature has been seen to take the attitudes of Mi 8 into consideration. Therefore, this study intends to regard attitudes as the independent variable to evaluate the impact of different attitudes on the RTK and PPP positioning performance of Mi 8. In this study, we used Mi 8 with two different attitudes (straight and lay down) to collect two hours data in every second, and these data was calculated by RTK and PPP to analyze its positioning performance. Also, we analyzed multi-GNSS and GPS-only positioning performance in RTK and PPP, to compare their difference.The research results show that when using GPS-only observation data, when the Xiaomi Mi 8 placed 90°, its positioning performance is better than 0° both in RTK and PPP. When we use five-constellation (GPS/Galileo/BDS/GLONASS/QZSS) observation data for RTK and three-constellation (GPS/Galileo/QZSS) observation data for PPP, both positioning performance is better than GPS-only observation data. When we keep Mi 8 straight, and using multi- constellation observation data for RTK, the horizontal and vertical accuracy can achieved 8.2 cm and 13.8 cm. | en_US |
dc.description.tableofcontents | 第一章 緒論 1第一節 研究背景以及文獻回顧 1第二節 研究動機及目的 5第三節 論文架構 6第二章 GNSS基本定位原理 7第一節 GNSS定位原理 7一、 虛擬距離觀測量 7二、 載波相位觀測量 8第二節 即時動態定位及精密單點定位 10一、 即時動態定位(Real time kinematic, RTK) 10二、 精密單點定位 11第三節 RTK以及PPP定位模型介紹 15一、 RTK定位模型介紹 15二、 PPP定位模型介紹 15第三章 研究方法 17第一節 設站區域 17第二節 研究設備及軟體 18一、 研究設備 18二、 研究軟體 21第三節 研究流程 23第四節 資料蒐集 24第四章 研究成果與分析 28第一節 訊號雜訊比 28第二節 擺放姿態定位效能分析 30一、 即時動態定位 30(一)整數週波值解算(Ambiguity Resolution, AR) 31(二)參考坐標差 33(三)均方根誤差 35二、 精密單點定位 37第三節 多星系定位效能分析 39一、 即時動態定位 39(一)整數週波值解算(Ambiguity Resolution, AR) 39(二)參考坐標差 40(三)均方根誤差 42二、精密單點定位 43第五章 結論與建議 46第一節 結論 46第二節 建議 47參考文獻 48一、 中文參考文獻 48二、 外文參考文獻 48三、 網頁參考文獻 50 | zh_TW |
dc.format.extent | 3567498 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0109257029 | en_US |
dc.subject (關鍵詞) | 小米8 | zh_TW |
dc.subject (關鍵詞) | 擺放姿態 | zh_TW |
dc.subject (關鍵詞) | 智慧型手機 | zh_TW |
dc.subject (關鍵詞) | 精密單點定位 | zh_TW |
dc.subject (關鍵詞) | 即時動態定位 | zh_TW |
dc.subject (關鍵詞) | Mi 8 | en_US |
dc.subject (關鍵詞) | Attitude | en_US |
dc.subject (關鍵詞) | Smartphone | en_US |
dc.subject (關鍵詞) | PPP | en_US |
dc.subject (關鍵詞) | RTK | en_US |
dc.title (題名) | 評估智慧型手機小米 8 擺放姿態對於精密定位效能之影響 | zh_TW |
dc.title (題名) | Evaluations for the impact caused by the attitudes of smartphone Mi 8 on the precise point positioning | en_US |
dc.type (資料類型) | thesis | en_US |
dc.relation.reference (參考文獻) | 支秉榮,2005,「全球定位系統與三維雷射掃描應用於變形監測之研究」,國立交通大學土木工程系學位論文:新竹。吳宥均,2019,「智慧型手機GNSS相位觀測量之定位分析」,健行科技大學資訊工程系碩士班碩士論文:桃園。林老生,2009,「 GPS 精密單點定位在地籍測量之應用」,『台灣土地研究』,2(2):1-25。曾清涼、儲慶美,1999,「GPS 衛星測量原理與應用」,第二版,國立成功大學衛星資訊研究中心:台南。黃文聖,2019,「GNSS雙星單頻與單星雙頻觀測量之運作效益分析」,健行科技大學土木工程系空間資訊與防災科技碩士論文:桃園。Banville. (2016). Precise positioning using raw GPS measurements from Android smartphones. GPS World., 27(11).Bisnath, S., and Gao, Y., 2009. Precise point positioning: a powerful technique with a promising future. GPS World., 20(4), 43.Chen, B., Gao, C., Liu, Y., & Sun, P. (2019). Real-time Precise Point Positioning with a Xiaomi MI 8 Android Smartphone. Sensors (Basel), 19(12). https://doi.org/10.3390/s19122835Kiliszek, D., & Kroszczyński, K. (2020). Performance of the precise point positioning method along with the development of GPS, GLONASS and Galileo systems. Measurement, 164. https://doi.org/10.1016/j.measurement.2020.108009Leandro, R. F., Santos, M. C., & Langley, R. B. (2010). Analyzing GNSS data in precise point positioning software. GPS Solutions, 15(1), 1-13. https://doi.org/10.1007/s10291-010-0173-9Robustelli, U., Baiocchi, V., & Pugliano, G. (2019). Assessment of Dual Frequency GNSS Observations from a Xiaomi Mi 8 Android Smartphone and Positioning Performance Analysis. Electronics, 8(1). https://doi.org/10.3390/electronics8010091Teunissen P. J. G., 1995, The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation, Journal of Geodesy, Vol. 70, pp. 65-82.Teunissen, P. J. G., 2000, The success rate and precision of GPS ambiguities, Journal of Geodesy, Vol 74, pp. 321–326.https://doi.org/10.1007/s001900050289Teunissen PJG, Montenbruck O (2017) Handbook of global navigation satellite systems. Springer, Switzerland.Xu, G. (2003) GPS Theory, Algorithms and Application. Springer-Verlag, New York.Zhang, X.H., LI, X.X., & LI, P. (2017). Review of GNSS PPP and Its Application. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China.IGS (2022) The International GNSS Service:https://igs.org/products/Suelynn Choy (2018) GNSS Precise Point Positioning (PPP):https://www.unoosa.org/documents/pdf/icg/2018/ait-gnss/16_PPP.pdf小米台灣 (2022) 小米台灣官方網站:https://www.mi.com/tw/小米8天線位置圖解(2020):http://y.qichejiashi.com/tupian/5970389.html臺北市政府地政局土地開發總隊(2022) 台北市衛星定位基準網:https://cors.gov.taipei/ | zh_TW |
dc.identifier.doi (DOI) | 10.6814/NCCU202201332 | en_US |